Ghi chú đến thành viên
Gởi Ðề Tài Mới Trả lời
 
Ðiều Chỉnh
  #6  
Old 24-08-2008, 09:14 AM
mr_robin's Avatar
mr_robin mr_robin is offline
Cái Thế Ma Nhân
 
Tham gia: May 2008
Đến từ: SG
Bài gởi: 37
Thời gian online: 7 giờ 22 phút 5 giây
Xu: 0
Thanks: 1
Thanked 0 Times in 0 Posts
Chương 6: Lỗ đen
Thuật ngữ lỗ đen còn rất mới. Nó được nhà khoa học người Mỹ John Wheeler đưa ra vào năm 1969 nhằm mô tả một cách hình tượng một ý tưởng bắt nguồn ít nhất khoảng 200 năm trước, vào thời mà còn có hai lý thuyết về ánh sáng: một lý thuyết được Newton ủng hộ cho rằng ánh sáng được tạo thành từ các hạt, còn lý thuyết kia cho rằng nó được tạo thành từ các sóng.

Hiện nay ta biết rằng cả hai lý thuyết trên đều đúng. Theo quan điểm nhị nguyên sóng/hạt của cơ học lượng tử, thì ánh sáng có thể xem như vừa là sóng vừa là hạt. Theo lý thuyết sóng về ánh sáng thì không rõ nó sẽ phản ứng thế nào đối với hấp dẫn. Nhưng nếu ánh sáng được tạo thành từ các hạt thì người ta có thể nghĩ rằng nó sẽ bị tác động bởi hấp dẫn hệt như các viên đạn đại bác, tên lửa và các hành tinh. Ban đầu người ta tưởng rằng ánh sáng truyền với vận tốc lớn vô hạn và như thế thì hấp dẫn không thể nào làm cho nó chậm lại được, nhưng phát minh của Roemer cho thấy ánh sáng truyền với vận tốc hữu hạn, điều đó có nghĩa là hấp dẫn có thể có tác động quan trọng.

Dựa trên giải thuyết đó, một giảng viên của Đại học Cambridge là John Michell đã viết một bài báo in trên tạp chí “những văn kiện triết học của Hội Hoàng gia London” (Philosophical Transaction of the Royal Society of London) vào năm 1783, trong đó ông chỉ ra rằng một ngôi sao đủ nặng và đặc có thể có trường hấp dẫn mạnh tới mức không cho ánh sáng thoát ra được: bất kỳ ánh sáng nào phát ra từ bề mặt ngôi sao đó cũng đều bị kéo ngược trở lại trước khi nó kịp truyền đi rất xa. Michell cho rằng có thể có một số rất lớn những sao như vậy. Mặc dù chúng ta không thể nhìn thấy những ngôi sao đó bởi vì ánh sáng từ những ngôi sao đó không đến được chúng ta, nhưng chúng ta vẫn cảm thấy được lực hút hấp dẫn của chúng. Những đối tượng đó là cái bây giờ chúng ta gọi là lỗ đen, bởi vì thực tế chúng là những khoảng đen trong vũ trụ.

Một giả thuyết tương tự cũng được một nhà khoa học người Pháp là hầu tước de Laplace đưa ra sau đó ít năm, tất nhiên là độc lập với Michell. Một điều khá lý thú là Laplace chỉ đưa ra giả thuyết này vào lần xuất bản thứ nhất và thứ hai của cuốn sách “Hệ thống thế giới”, nhưng rồi lại bỏ đi trong những lần xuất bản sau, chắc ông cho rằng đó là một ý tưởng điên rồ. (Cũng như lý thuyết hạt của ánh sáng không được ủng hộ trong suốt thế kỷ 19, và dường như mọi chuyện đều có thể giải thích bằng lý thuyết sóng, nhưng theo lý thuyết sóng thì hoàn toàn không rõ ánh sáng bị hấp dẫn tác động như thế nào).

Thực tế, xem ánh sáng như những viên đạn đại bác trong lý thuyết hấp dẫn của Newton là hoàn toàn không thích hợp bởi vì ánh sáng có vận tốc cố định. (Một viên đạn đại bác khi bắn lên từ mặt đất sẽ bị lực hấp dẫn làm cho chuyển động chậm lại và cuối cùng sẽ dừng lại và rơi xuống, trong khi đó hạt photon vẫn phải tiếp tục bay lên với vận tốc không đổi. Vậy thì lực hấp dẫn của Newton làm thế nào có thể tác động tới ánh sáng?). Phải mãi cho tới khi Einstein đưa ra thuyết tương đối rộng vào năm 1915, ta mới có một lý thuyết nhất quán cho biết hấp dẫn tác động như thế nào đến ánh sáng. Và thậm chí ngay cả khi đó cũng phải mất một thời gian sau người ta mới hiểu được những hệ quả của lý thuyết đối với các sao nặng.

Để hiểu một lỗ đen có thể được hình thành như thế nào, trước hết chúng ta phải hiểu vòng đời của một ngôi sao. Một ngôi sao được hình thành khi một lượng lớn khí (mà chủ yếu là hydro) bắt đầu co lại do lực hút hấp dẫn của chính mình. Và vì khi các khối khí co lại, nên các nguyên tử khí va chạm nhau thường xuyên hơn và ngày càng có vận tốc lớn hơn dẫn tới khối khí nóng lên. Cuối cùng, khối khí sẽ nóng tới mức khi các nguyên tử hydro va chạm nhau chúng sẽ không rời nhau ra nữa mà liên kết với nhau thành nguyên tử heli. Nhiệt giải phóng ra từ phản ứng này - giống như vụ nổ của bom khinh khí - sẽ làm cho ngôi sao phát sáng. Lượng nhiệt đó cũng làm tăng áp suất của khối khí cho tới khi đủ để cân bằng với lực hút hấp dẫn và khối khí ngừng co lại. Điều này cũng hơi giống với trường hợp quả khí cầu, trong đó có sự cân bằng giữa áp suất của không khí bên trong có xu hướng làm cho quả khí cầu phồng ra và sức căng của vỏ cao su có xu hướng làm cho nó co lại. Những ngôi sao sẽ còn ổn định như thế một thời gian dài với nhiệt từ các phản ứng hạt nhân tỏa ra cân bằng với lực hút hấp dẫn. Tuy nhiên, cuối cùng rồi các ngôi sao cũng sẽ dùng hết số khí hydro và các nhiên liệu hạt nhân của nó. Một điều thật nghịch lý là các ngôi sao càng có nhiều nhiên liệu lúc bắt đầu thì sẽ hết càng sớm. Đó là bởi vì ngôi sao càng nặng thì nó phải càng nóng để cân bằng với lực hút hấp dẫn. Mà nó đã càng nóng thì sẽ dùng hết số nhiên liệu của nó càng nhanh. Mặt trời của chúng ta có lẽ còn đủ nhiên liệu cho khoảng gần năm ngàn triệu năm nữa, nhưng những ngôi sao nặng hơn có thể dùng hết nhiên liệu của chúng chỉ trong khoảng một trăm triệu năm, ít hơn tuổi của vũ trụ rất nhiều. Khi một ngôi sao hết nhiên liệu, nó sẽ lạnh đi và co lại. Chỉ cuối những năm 20, người ta mới hiểu được điều gì xảy ra đối với nó khi đó.

Năm 1928 một sinh viên Ấn Độ mới tốt nghiệp đại học tên là Subrahmanyan Chandrasekhar đã dong thuyền tới nước Anh để theo học nhà thiên văn ngài Arthur Eddington, một chuyên gia về thuyết tương đối rộng ở Cambridge. (Theo một số dư luận, thì một nhà báo vào đầu những năm 20 có nói với Eddington, rằng ông ta nghe nói cả thế giới chỉ có ba người hiểu được thuyết tương đối rộng. Eddington im lặng một lát rồi nói: “Tôi còn đang cố nghĩ xem người thứ ba là ai”). Trong suốt chuyến chu du của mình từ Ấn Độ, Chandrasekhar đã giải quyết được vấn đề: một ngôi sao có thể lớn tới mức nào để khi đã sử dụng hết nhiên liệu vẫn chống chọi được với lực hấp dẫn riêng của nó. Ý tưởng của ông như sau: khi một ngôi sao trở nên nhỏ, các hạt vật chất sẽ ở rất gần nhau, và vì vậy theo nguyên lý loại trừ Pauli, chúng cần phải có vận tốc khác nhau. Điều này làm cho chúng chuyển động ra xa nhau và vì thế có xu hướng làm cho sao giãn nở ra. Do đó một ngôi sao có thể tự duy trì để có một bán kính không đổi bằng cách giữ cân bằng giữa lực hút hấp dẫn và lực đẩy xuất hiện do nguyên lý loại trừ, hệt như ở giai đoạn đầu trong cuộc đời của nó lực hấp dẫn được cân bằng bởi nhiệt.

Tuy nhiên, Chandrasekhar thấy rằng lực đẩy do nguyên lý loại trừ tạo ra có một giới hạn. Lý thuyết tương đối rộng đặt một giới hạn cho sự khác biệt cực đại về vận tốc của các hạt vật chất trong các ngôi sao - đó là vận tốc của ánh sáng. Điều này có nghĩa là khi một ngôi sao đủ đặc, lực đẩy gây bởi nguyên lý loại trừ sẽ nhỏ hơn lực hút hấp dẫn. Chandrasekhar tính ra rằng một ngôi sao lạnh có khối lượng lớn hơn khối lượng mặt trời chừng 1,5 lần sẽ không thể tự chống chọi nổi với lực hấp dẫn riêng của nó. (Khối lượng này hiện nay được gọi là giới hạn Chandrasekhar). Phát minh tương tự cũng được nhà khoa học người Nga Lev Davidovich Landau đưa ra vào cùng thời gian đó.

Điều này có những hệ quả quan trọng đối với số phận tối hậu của các ngôi sao nặng. Nếu khối lượng của một ngôi sao nhỏ hơn giới hạn Chandrasekhar, thì cuối cùng nó cũng có thể ngừng co lại và yên phận ở trạng thái cuối cùng khả dĩ như “một sao lùn trắng” với bán kính chỉ khoảng vài ngàn dặm và mật độ khoảng vài trăm tấn trong một inch khối. Sao lùn trắng chống đỡ được với lực hút hấp dẫn là bởi lực đẩy do nguyên lý loại trừ sinh ra giữa các electron trong vật chất của nó. Chúng ta đã quan sát được một số khá lớn những sao lùn trắng này. Một trong những sao lùn đầu tiên quan sát được là ngôi sao quay xung quanh sao Thiên Lang (Sirius) - ngôi sao sáng nhất trên bầu trời đêm.

Landau chỉ ra rằng còn có một trạng thái cuối cùng khả dĩ nữa cho các ngôi sao có khối lượng giới hạn cỡ 1 đến 2 lần lớn hơn khối lượng mặt trời nhưng có kích thước còn nhỏ hơn cả các sao lùn trắng nhiều. Các sao này chống chọi được với lực hút hấp dẫn, bởi lực đẩy do nguyên lý loại trừ tạo ra giữa các neutron và proton lớn hơn là giữa các electron. Do đó chúng được gọi là các sao neutron. Chúng có bán kính chỉ cỡ mươi dặm và có mật độ cỡ vài trăm triệu tấn trên một inch khối. Khi sao neutron lần đầu tiên được tiên đoán, người ta không có cách nào quan sát được chúng và thực tế mãi rất lâu về sau người ta cũng không phát hiện được.

Trái lại, những ngôi sao có khối lượng lớn hơn giới hạn Chandrasekhar lại có vấn đề rất lớn đặt ra khi chúng đã dùng hết nhiên liệu. Trong một số trường hợp chúng có thể nổ hoặc điều chỉnh để rút bớt đi một lượng vật chất đủ để làm giảm khối lượng của nó xuống dưới giới hạn và như vậy sẽ tránh được tai họa co lại do hấp dẫn. Tuy nhiên, thật khó lòng tin được rằng điều này luôn luôn xảy ra bất kể ngôi sao lớn tới mức nào. Vả lại, làm sao biết được nó cần phải giảm trọng lượng? Và cho dù mọi ngôi sao đều biết điều chỉnh giảm khối lượng đủ để tránh được quá trình co lại thì điều gì sẽ xảy ra nếu ta thêm khối lượng cho một sao lùn trắng hoặc sao neutron để khối lượng của nó lớn hơn khối lượng giới hạn? Liệu nó có co lại tới mật độ vô hạn không? Eddington đã bị “sốc” bởi hệ quả đó và ông đã chối bỏ không tin kết quả của Chandrasekhar. Eddington nghĩ rằng đơn giản là không thể có một ngôi sao có thể co lại thành một điểm được. Đó cũng là quan điểm của đa số các nhà khoa học. Chính Einstein cũng viết một bài báo trong đó ông tuyên bố rằng một ngôi sao không thể co lại tới kích thước bằng 0 được! Trước sự chống đối của các nhà khoa học khác, mà đặc biệt là Eddington - vừa là thầy giáo cũ vừa là người có uy tín hàng đầu về cấu trúc các sao, Chandrasekhar đành bỏ phương hướng nghiên cứu đó của mình và chuyển sang nghiên cứu những vấn đề khác trong thiên văn học như sự chuyển động của các cụm sao. Tuy nhiên, khi ông được trao giải thưởng Nobel vào năm 1938, thì ít nhất cũng một phần là do công trình đầu tay của ông về khối lượng giới hạn của các sao lạnh.

Chandrasekhar đã chứng minh được rằng nguyên lý loại trừ không thể ngăn chặn được sự co lại của các ngôi sao có khối lượng lớn hơn giới hạn Chandrasekhar, nhưng vấn đề hiểu được điều gì sẽ xảy ra đối với những sao như vậy theo thuyết tương đối rộng thì phải tới năm 1939 mới được nhà khoa học trẻ người Mỹ là Robert Oppenheimer giải quyết lần đầu tiên. Tuy nhiên, kết quả của ông cho thấy rằng không có một hệ quả quan sát nào có thể phát hiện được bằng các kính thiên văn thời đó. Rồi chiến tranh thế giới thứ 2 xảy ra, và chính Oppenheimer lại cuốn hút vào dự án bom nguyên tử. Sau chiến tranh, vấn đề sự co lại do hấp dẫn bị lãng quên vì đa số các nhà khoa học bắt đầu lao vào các hiện tượng xảy ra trong quy mô nguyên tử và hạt nhân của nó. Tuy nhiên, vào những năm 60 sự quan tâm tới các vấn đề ở thang vĩ mô của thiên văn học và vũ trụ học lại sống dậy vì số lượng cũng như tầm quan sát thiên văn tăng lên rất lớn, do việc áp dụng những công nghệ hiện đại. Công trình của Oppenheimer khi đó lại được phát hiện lại và được mở rộng thêm bởi nhiều người khác.

Bức tranh mà hiện nay chúng ta có từ công trình của Oppenheimer như sau: trường hấp dẫn của ngôi sao làm thay đổi đường truyền của các tia sáng trong không-thời gian. Các nón ánh sáng - chỉ đường truyền trong không-thời gian của các chớp sáng được phát ra từ đỉnh của nón - sẽ hơi bị uốn vào phía trong, phía gần với bề mặt của sao. Điều này có thể thấy được theo quỹ đạo cong của tia sáng phát từ những ngôi sao xa trong quá trình nhật thực. Vì ngôi sao nặng đang co lại, nên trường hấp dẫn ở bề mặt của nó ngày càng mạnh và nón ánh sáng càng bị uốn cong vào phía trong. Điều này làm cho tia sáng ngày càng khó thoát khỏi ngôi sao, và ánh sáng sẽ ngày càng mờ đi và đỏ hơn đối với người quan sát từ xa. Cuối cùng, khi ngôi sao đã co tới một bán kính tới hạn nào đó, trường hấp dẫn ở bề mặt của nó trở nên mạnh tới mức nón ánh sáng bị uốn vào phía trong nhiều đến nỗi ánh sáng không thể thoát ra được nữa

(hình 6.1). Theo thuyết tương đối thì không có gì có thể chuyển động nhanh hơn ánh sáng. Vì vậy, nếu ánh sáng không thể thoát ra được, thì cũng không có gì có thể thoát được ra; tất cả đều bị trường hấp dẫn kéo lại. Do đó, ta có một tập các sự cố, tức là một vùng trong không-thời gian, mà không có gì có thể thoát ra từ đó để đến được với người quan sát từ xa. Vùng này chính là cái mà người ta gọi là lỗ đen. Biên của vùng này được gọi là chân trời sự cố, và nó trùng với đường truyền của các tia sáng vừa chớm không thoát ra được khỏi lỗ đen.

Để hiểu được điều mà bạn sẽ thấy nếu bạn đang quan sát sự co lại của một ngôi sao để tạo thành lỗ đen, thì cần nhớ rằng trong thuyết tương đối không có khái niệm thời gian tuyệt đối. Mỗi một người quan sát có độ đo thời gian riêng của mình. Thời gian đối với người ở trên một ngôi sao sẽ khác thời gian của người ở xa, do có trường hấp dẫn của các ngôi sao. Giả sử có một nhà du hành vũ trụ quả cảm ở ngay trên bề mặt một ngôi sao đang co lại vào phía trong của nó, cứ mỗi một giây theo đồng hồ của anh ta lại gửi về con tàu đang quay quanh ngôi sao đó một tín hiệu. Ở thời điểm nào đó theo đồng hồ của anh ta, ví dụ lúc 11 giờ, ngôi sao co lại dưới bán kính tới hạn - kích thước mà ở đó trường hấp dẫn bắt đầu mạnh tới mức không gì có thể thoát được ra, - và như vậy, các tín hiệu của nhà du hành không tới được con tàu nữa. Khi tới gần 11 giờ, các đồng nghiệp của nhà du hành quan sát từ con tàu thấy khoảng thời gian giữa hai tín hiệu liên tiếp do nhà du hành gửi về ngày càng dài hơn, nhưng trước 10 giờ 59 phút 59 giây hiệu ứng đó rất nhỏ. Họ chỉ phải đợi hơn một giây chút xíu giữa tín hiệu mà nhà du hành gửi về lúc 10 giờ 59 phút 58 giây và tín hiệu anh ta gửi về lúc đồng hồ anh ta chỉ 10 giờ 59 phút 59 giây, nhưng họ sẽ phải đợi vĩnh viễn viễn tín hiệu gửi lúc 11 giờ. Các sóng ánh sáng được phát từ bề mặt ngôi sao trong khoảng thời gian giữa 10 giờ 59 phút 59 giây và 11 giờ theo đồng hồ của nhà du hành sẽ được truyền qua một khoảng thời gian vô hạn, nếu đo từ con tàu. Khoảng thời gian giữa hai sóng ánh sáng liên tiếp tới con tàu mỗi lúc một dài hơn, do đó ánh sáng từ ngôi sao mỗi lúc một đỏ và nhợt nhạt hơn. Cuối cùng, ngôi sao sẽ mờ tối tới mức từ con tàu không thể nhìn thấy nó nữa; tất cả những cái còn lại chỉ là một lỗ đen trong không gian. Tuy nhiên, ngôi sao vẫn tiếp tục tác dụng một lực hấp dẫn như trước lên con tàu làm cho nó vẫn tiếp tục quay xung quanh lỗ đen.

Thực ra, kịch bản này không phải hoàn toàn là hiện thực vì vấn đề sau: Lực hấp dẫn càng yếu khi bạn càng ở xa ngôi sao, vì vậy lực hấp dẫn tác dụng lên chân nhà du hành vũ trụ quả cảm của chúng ta sẽ luôn luôn lớn hơn lực tác dụng lên đầu của anh ta. Sự khác biệt về lực đó sẽ kéo dài nhà du hành vũ trụ của chúng ta giống như một sợi mì hoặc xé đứt anh ta ra trước khi ngôi sao co tới bán kính tới hạn, tại đó chân trời sự cố được hình thành! Tuy nhiên, chúng ta tin rằng trong vũ trụ có những vật thể lớn hơn rất nhiều, chẳng hạn như những vùng trung tâm của các thiên hà, cũng có thể co lại do hấp dẫn để tạo thành các lỗ đen; một nhà du hành vũ trụ ở trên một trong các vật thể đó sẽ không bị xé đứt trước khi lỗ đen được tạo thành. Thực tế, anh ta sẽ chẳng cảm thấy gì đặc biệt khi đạt tới bán kính tới hạn, và có thể vượt điểm-không-đường-quay-lại mà không nhận thấy. Tuy nhiên, chỉ một ít giờ sau, khi vùng đó tiếp tục co lại, sự khác biệt về lực hấp dẫn tác dụng lên chân và đầu sẽ lại trở nên mạnh tới mức nó sẽ xé đứt người anh ta.

Công trình mà Roger Penrose và tôi tiến hành giữa năm 1965 và 1970 chứng tỏ, rằng theo thuyết tương đối rộng, thì cần phải có một kỳ dị với mật độ và độ cong không-thời gian vô hạn bên trong lỗ đen. Điều này khá giống với vụ nổ lớn ở điểm bắt đầu, chỉ có điều ở đây lại là thời điểm cuối của một vật thể cùng nhà du hành đang co lại. Ở kỳ dị này, các định luật khoa học và khả năng tiên đoán tương lai đều không dùng được nữa. Tuy nhiên, một người quan sát còn ở ngoài lỗ đen sẽ không bị ảnh hưởng bởi sự mất khả năng tiên đoán đó vì không một tín hiệu nào hoặc tia sáng nào từ điểm kỳ dị đó tới được anh ta. Sự kiện đáng chú ý đó đã dẫn Roger Penrose tới giả thuyết về sự kiểm duyệt vũ trụ - một giả thuyết có thể phát biểu dưới dạng “Chúa căm ghét sự kỳ dị trần trụi”. Nói một cách khác, những kỳ dị được tạo ra bởi sự co lại do hấp dẫn chỉ xảy ra ở những nơi giống như lỗ đen - nơi mà chúng được che giấu kín đáo bởi chân trời sự cố không cho người ngoài nhìn thấy. Nói một cách chặt chẽ thì đây là mới là giả thuyết về sự kiểm duyệt vũ trụ yếu: nó bảo vệ cho những người quan sát còn ở ngoài lỗ đen tránh được những hậu quả do sự mất khả năng tiên đoán xảy ra ở điểm kỳ dị, nhưng nó hoàn toàn không làm được gì cho nhà du hành bất hạnh đã bị rơi vào lỗ đen.

Có một số nghiệm của các phương trình của thuyết tương đối rộng, trong đó nó cho phép nhà du hành của chúng ta có thể nhìn thấy điểm kỳ dị trần trụi: như vậy anh ta có thể tránh không đụng vào nó và thay vì anh ta có thể rơi qua một cái “lỗ sâu đục” và đi ra một vùng khác của vũ trụ. Điều này tạo ra những khả năng to lớn cho việc du hành trong không gian và thời gian, nhưng thật không may, những nghiệm đó lại rất không ổn định; chỉ cần một nhiễu động nhỏ, ví dụ như sự có mặt của nhà du hành, là đã có thể làm cho chúng thay đổi tới mức nhà du hành không còn nhìn thấy kỳ dị nữa cho tới khi chạm vào nó và thời gian của anh ta sẽ chấm hết. Nói cách khác, kỳ dị luôn luôn nằm ở tương lai chứ không bao giờ nằm ở quá khứ của anh ta. Giả thuyết kiểm duyệt vũ trụ mạnh phát biểu rằng trong nghiệm hiện thực thì các kỳ dị luôn luôn hoặc hoàn toàn nằm trong tương lai (như các kỳ dị do quá trình co lại do hấp dẫn) hoặc hoàn toàn nằm trong quá khứ (như vụ nổ lớn). Người ta rất hy vọng một trong hai giả thuyết kiểm duyệt là đúng, bởi vì ở gần các kỳ dị trần trụi sẽ có thể chu du về quá khứ. Trong khi điều này thật tuyệt vời đối với các nhà viết truyện khoa học viễn tưởng thì nó cũng có nghĩa là cuộc sống của bất kỳ ai đều không an toàn: một kẻ nào đó có thể mò về quá khứ giết chết bố hoặc mẹ của bạn trước khi bạn được đầu thai!

Chân trời sự cố, biên của vùng không - thời gian mà từ đó không gì thoát ra được, có tác dụng như một màng một chiều bao quanh lỗ đen: các vật, tỷ như nhà du hành khinh suất của chúng ta, có thể rơi vào lỗ đen qua chân trời sự cố, nhưng không gì có thể thoát ra lỗ đen qua chân trời sự cố (cần nhớ rằng chân trời sự cố là đường đi trong không-thời gian của ánh sáng đang tìm cách thoát khỏi lỗ đen, và không gì có thể chuyển động nhanh hơn ánh sáng). Có thể dùng lời của thi sĩ Dante nói về lối vào địa ngục để nói về chân trời sự cố: “Hỡi những người bước vào đây hãy vứt bỏ mọi hy vọng!”. Bất kỳ cái gì hoặc bất kỳ ai, một khi đã rơi qua chân trời sự cố thì sẽ sớm tới vùng có mật độ vô hạn và, chấm hết thời gian.

Thuyết tương đối rộng tiên đoán rằng các vật nặng khi chuyển động sẽ phát ra sóng hấp dẫn - những nếp gợn trong độ cong của không gian truyền với vận tốc của ánh sáng. Những sóng này tương tự như các sóng ánh sáng, là những gợn sóng của trường điện từ, nhưng sóng hấp dẫn khó phát hiện hơn nhiều. Giống như ánh sáng, sóng hấp dẫn cũng mang năng lượng lấy từ các vật phát ra nó. Do đó, hệ thống các vật nặng cuối cùng sẽ an bài ở một trạng thái dừng nào đó bởi vì năng lượng ở bất cứ dạng vận động nào đều được các sóng hấp dẫn mang đi. (Điều này gần tương tự với việc ném một cái nút xuống nước. Ban đầu, nó dập dềnh khá mạnh, nhưng rồi vì các gợn sóng mang dần đi hết năng lượng của nó, cuối cùng nó an bài ở một trạng thái dừng). Ví dụ, chuyển động của trái đất xung quanh mặt trời tạo ra các sóng hấp dẫn. Tác dụng của việc mất năng lượng sẽ làm thay đổi quỹ đạo trái đất, làm cho nó dần dần tiến tới gần mặt trời hơn, rồi cuối cùng chạm mặt trời và an bài ở một trạng thái dừng. Tuy nhiên, tốc độ mất năng lượng của trái đất và mặt trời rất thấp: chỉ cỡ đủ để chạy một lò sưởi điện nhỏ. Điều này có nghĩa là phải mất gần một ngàn triệu triệu triệu triệu năm trái đất mới đâm vào mặt trời và vì vậy chúng ta chẳng có lý do gì để lo lắng cả! Sự thay đổi quỹ đạo của trái đất cũng rất chậm khiến cho khó có thể quan sát được, nhưng chính hiện tượng này đã được quan sát thấy ít năm trước trong hệ thống có tên là PSR 1913+16 PSR là tên viết tắt của một pulsar (pulsar là chuẩn tinh: một loại sao neutron đặc biệt có khả năng phát đều đặn các xung sóng radio). Hệ thống này gồm hai sao neutron quay xung quanh nhau và sự mất năng lượng do phát sóng hấp dẫn làm cho chúng chuyển động theo đường xoắn ốc hướng vào nhau

Trong quá trình co lại do hấp dẫn của một ngôi sao để tạo thành một lỗ đen, các chuyển động sẽ nhanh hơn nhiều và vì vậy tốc độ năng lượng được chuyển đi cũng cao hơn nhiều. Do vậy mà thời gian để đạt tới sự an bài ở một trạng thái dừng sẽ không quá lâu. Vậy cái giai đoạn cuối cùng này nhìn sẽ như thế nào? Người ta cho rằng, nó sẽ phụ thuộc vào tất cả các đặc tính của ngôi sao. Có nghĩa là, nó không chỉ phụ thuộc vào khối lượng và tốc độ quay, mà còn phụ thuộc vào những mật độ khác nhau của các phần tử khác nhau của ngôi sao và cả những chuyển động phức tạp của các khí trong ngôi sao đó nữa. Và nếu các lỗ đen cũng đa dạng như những đối tượng đã co lại và tạo nên chúng thì sẽ rất khó đưa ra một tiên đoán nào về các lỗ đen nói chung.

Tuy nhiên, vào năm 1967, một nhà khoa học Canada tên là Werner Israel (ông sinh ở Berlin, lớn lên ở Nam Phi, và làm luận án tiến sĩ ở Ireland) đã tạo ra một bước ngoặt trong việc nghiên cứu các lỗ đen. Israel chỉ ra rằng, theo thuyết tương đối rộng thì các lỗ đen không quay là rất đơn giản; chúng có dạng cầu lý tưởng và có kích thước chỉ phụ thuộc vào khối lượng của chúng; hai lỗ đen như thế có khối lượng như nhau là hoàn toàn đồng nhất với nhau.

Thực tế, những lỗ đen này có thể được mô tả bằng một nghiệm riêng của phương trình Einstein đã được biết từ năm 1917, do Karl Schwarzchild tìm ra gần như ngay sau khi tuyết tương đối rộng được phát minh. Thoạt đầu, nhiều người, thậm chí ngay cả Israel, lý luận rằng, vì các lỗ đen cần phải có dạng cầu lý tưởng nên chúng chỉ có thể được tạo thành từ sự co lại của đối tượng có dạng cầu lý tưởng. Mà một ngôi sao chẳng bao giờ có thể có dạng cầu lý tưởng được, nên nó chỉ có thể co lại để tạo thành một kỳ dị trần trụi mà thôi.

Tuy nhiên, có một cách giải thích khác cho kết quả của Israel mà Roger Penrose và đặc biệt là John Wheeler rất ủng hộ. Họ lý luận rằng, những chuyển động nhanh trong quá trình co lại có nghĩa là các sóng hấp dẫn do nó phát ra sẽ làm cho nó có dạng cầu hơn và vào thời điểm an bài ở trạng thái dừng nó có dạng chính xác là cầu. Theo quan điểm này thì một ngôi sao không quay, bất kể hình dạng và cấu trúc bên trong phức tạp của nó, sau khi kết thúc quá trình co lại do hấp dẫn đều là một lỗ đen có dạng cầu lý tưởng với kích thước chỉ phụ thuộc vào khối lượng của nó. Những tính toán sau này đều củng cố cho quan điểm này và chẳng bao lâu sau nó đã được mọi người chấp nhận.

Kết quả của Israel chỉ đề cập trường hợp các lỗ đen được tạo thành từ các vật thể không quay. Năm 1963 Roy Kerr người New Zealand đã tìm ra một tập hợp nghiệm của các phương trình của thuyết tương đối mô tả các lỗ đen quay. Các lỗ đen “Kerr” đó quay với vận tốc không đổi, có kích thước và hình dáng chỉ phụ thuộc vào khối lượng và tốc độ quay của chúng. Nếu tốc độ quay bằng không, lỗ đen sẽ là cầu lý tưởng và nghiệm này sẽ trùng với nghiệm Schwarzchild. Nếu tốc độ quay khác 0, lỗ đen sẽ phình ra phía ngoài ở gần xích đạo của nó (cũng như trái đất và mặt trời đều phình ra do sự quay của chúng), và nếu nó quay càng nhanh thì sự phình ra sẽ càng mạnh. Như vậy, để mở rộng kết quả của Israel cho bao hàm được cả các vật thể quay, người ta suy đoán rằng một vật thể quay co lại để tạo thành một lỗ đen cuối cùng sẽ an bài ở trạng thái dừng được mô tả bởi nghiệm Kerr.

Năm 1970, một đồng nghiệp và cũng là nghiên cứu sinh của tôi, Brandon Carter đã đi được bước đầu tiên hướng tới chứng minh suy đoán trên. Anh đã chứng tỏ được rằng với điều kiện lỗ đen quay dừng có một trục đối xứng, giống như một con quay, thì nó sẽ có kích thước và hình dạng chỉ phụ thuộc vào khối lượng và tốc độ quay của nó. Sau đó vào năm 1971, tôi đã chứng minh được rằng bất kỳ một lỗ đen quay dừng nào đều cần phải có một trục đối xứng như vậy. Cuối cùng, vào năm 1973, David Robinson ở trường Kings College, London đã dùng kết quả của Carter và tôi chứng minh được rằng ước đoán nói trên là đúng. Những lỗ đen như vậy thực sự là nghiệm Kerr. Như vậy, sau khi co lại do hấp dẫn, lỗ đen sẽ an bài trong trạng thái có thể quay nhưng không xung động. Hơn nữa, kích thước hình dạng của nó chỉ phụ thuộc vào khối lượng và tốc độ quay chứ không phụ thuộc vào bản chất của vật thể bị co lại tạo nên nó. Kết quả này được biết dưới châm ngôn: “lỗ đen không có tóc”. Định lý “không có tóc” này có một tầm quan trọng thực tiễn to lớn bởi nó hạn chế rất mạnh các loại lỗ đen lý thuyết. Do vậy, người ta có thể tạo ra những mô hình chi tiết của các vật có khả năng chứa lỗ đen và so sánh những tiên đoán của mô hình với quan sát. Điều này cũng có nghĩa là một lượng rất lớn thông tin về vật thể co lại sẽ phải mất đi khi lỗ đen được tạo thành, bởi vì sau đấy tất cả những thứ mà ta có thể đo được về vật thể đó chỉ là khối lượng và tốc độ quay của nó. Ý nghĩa của điều này sẽ được thấy rõ ở chương sau.

Các lỗ đen chỉ là một trong số rất ít các trường hợp trong lịch sử khoa học, trong đó lý thuyết đã được phát triển rất chi tiết như một mô hình toán học trước khi có những bằng chứng từ quan sát xác nhận nó là đúng đắn.

Thực tế, điều này đã được dùng như một luận cứ chủ yếu của những người phản đối lỗ đen: làm sao người ta có thể tin rằng có những vật thể mà bằng chứng về sự tồn tại của nó chỉ là những tính toán dựa trên lý thuyết tương đối rộng, một lý thuyết vốn đã đáng ngờ? Tuy nhiên, vào năm 1963, Maarten Schmidt, một nhà thiên văn làm việc ở Đài thiên văn Palomar, Caliornia, Mỹ, đã đo được sự chuyển dịch về phía đỏ của một đối tượng mờ tựa như sao theo hướng một nguồn phát sóng radio có tên là 3C273 (tức là số của nguồn là 273 trong catalogue thứ 3 ở Cambridge). Ông thấy sự chuyển dịch này là quá lớn, nếu xem nó do trường hấp dẫn gây ra: nếu đó là sự chuyển dịch về phía đỏ do trường hấp dẫn gây ra thì đối tượng đó phải rất nặng và ở gần chúng ta tới mức nó sẽ làm nhiễu động quỹ đạo của các hành tinh trong Hệ mặt trời. Điều này gợi ý rằng sự chuyển dịch về phía đỏ này là do sự giãn nở của vũ trụ và vì vậy đối tượng đó phải ở rất xa chúng ta. Để thấy được ở một khoảng cách xa như thế vật thể đó phải rất sáng hay nói cách khác là phải phát ra một năng lượng cực lớn. Cơ chế duy nhất mà con người có thể nghĩ ra để miêu tả một năng lượng lớn như thế, là sự co lại do hấp dẫn không phải chỉ của một ngôi sao mà của cả vùng trung tâm của thiên hà. Nhiều đối tượng “tương tự sao” (chuẩn tinh), hay nói cách khác là các quasar, cũng đã được phát hiện. Tất cả đều có chuyển dịch lớn về phía đỏ. Nhưng tất cả chúng đều ở quá xa, khó quan sát để cho một bằng chứng quyết định về các lỗ đen.

Sự cổ vũ tiếp theo cho sự tồn tại của các lỗ đen là phát minh của Jocelyn Bell, một nghiên cứu sinh ở Cambridge, về những thiên thể phát các xung radio đều đặn. Thoạt đầu, Bell và người hướng dẫn của chị là Antony Hewish, nghĩ rằng có lẽ họ đã liên lạc được với một nền văn minh lạ trong thiên hà! Thực tế, trong buổi seminar khi họ thông báo phát minh của họ, tôi nhớ là họ đã gọi bốn nguồn phát sóng radio đầu tiên đó là LGM 1-4 với LGM là viết tắt của “Little Green Men” (những người xanh nhỏ). Tuy nhiên, cuối cùng họ và mọi người đều đi đến một kết luận ít lãng mạn hơn cho rằng những đối tượng đó - có tên là pulsar - thực tế là những sao neutron quay, có khả năng phát các xung sóng radio, do sự tương tác phức tạp giữa các từ trường của nó với vật chất xung quanh. Đây là một tin không mấy vui vẻ đối với các nhà văn chuyên viết về các chuyện phiêu lưu trong vũ trụ, nhưng lại đầy hy vọng đối với một số ít người tin vào sự tồn tại của lỗ đen thời đó: đây là bằng chứng xác thực đầu tiên về sự tồn tại của các sao neutron. Sao neutron có bán kính chừng mười dặm, chỉ lớn hơn bán kính tới hạn để ngôi sao trở thành một lỗ đen ít lần. Nếu một sao có thể co lại tới một kích thước nhỏ như vậy thì cũng không có lý do gì mà những ngôi sao khác không thể co lại tới một kích thước còn nhỏ hơn nữa để trở thành lỗ đen.

Làm sao chúng ta có thể hy vọng phát hiện được lỗ đen, khi mà theo chính định nghĩa của nó, nó không phát ra một tia sáng nào? Điều này cũng na ná như đi tìm con mèo đen trong một kho than. May thay vẫn có một cách. Như John Michell đã chỉ ra trong bài báo tiên phong của ông viết năm 1983, lỗ đen vẫn tiếp tục tác dụng lực hấp dẫn lên các vật xung quanh. Các nhà thiên văn đã quan sát được nhiều hệ thống, trong đó có hai sao quay xung quanh nhau và hút nhau bằng lực hấp dẫn. Họ cũng quan sát được những hệ thống, trong đó chỉ có một sao thấy được quay xung quanh sao đồng hành (không thấy được). Tất nhiên, người ta không thể kết luận ngay rằng sao đồng hành đó là một lỗ đen, vì nó có thể đơn giản chỉ là một ngôi sao phát sáng quá yếu nên ta không thấy được. Tuy nhiên, có một số trong các hệ thống đó, chẳng hạn như hệ thống có tên là Cygnus X-1

(hình 6.2) cũng là những nguồn phát tia X rất mạnh. Cách giải thích tốt nhất cho hiện tượng này là vật chất bị bắn ra khỏi bề mặt của ngôi sao nhìn thấy. Vì lượng vật chất này rơi về phía đồng hành không nhìn thấy, nên nó phát triển thành chuyển động theo đường xoắn ốc (khá giống như nước chảy ra khỏi bồn tắm) và trở nên rất nóng, phát ra tia X (hình 6.3). Muốn cho cơ chế này hoạt động, sao đồng hành không nhìn thấy phải rất nhỏ, giống như sao lùn trắng, sao neutron hoặc lỗ đen. Từ quỹ đạo quan sát được của ngôi sao nhìn thấy, người ta có thể xác định được khối lượng khả dĩ thấp nhất của ngôi sao đồng hành không nhìn thấy. Trong trường hợp hệ thống Cygnus X-1 sao đó có khối lượng lớn gấp 6 lần mặt trời. Theo kết quả của Chandrasekhar thì như thế là quá lớn để cho sao không nhìn thấy là một sao lùn trắng. Nó cũng có khối lượng quá lớn để là sao neutron. Vì vậy, nó dường như phải là một lỗ đen...

Cũng có những mô hình khác giải thích rằng Cygnus X-1 không bao gồm lỗ đen, nhưng tất cả những mô hình đó đều rất gượng gạo. Lỗ đen là cách giải thích thực sự tự nhiên duy nhất những quan trắc đó. Mặc dù vậy, tôi đã đánh cuộc với Kip Thorne ở Viện kỹ thuật California, rằng thực tế Cygnus X-1 không chứa lỗ đen! Đây chẳng qua chỉ là sách lược bảo hiểm cho tôi. Tôi đã tốn biết bao công sức cho những lỗ đen và tất cả sẽ trở nên vô ích, nếu hóa ra là các lỗ đen không tồn tại. Nhưng khi đó tôi sẽ được an ủi là mình thắng cuộc và điều đó sẽ mang lại cho tôi bốn năm liền tạp chí Private Eye. Nếu lỗ đen tồn tại thì Kip được 1 năm tạp chí Penthouse. Khi chúng tôi đánh cuộc vào năm 1975 thì chúng tôi đã chắc tới 80% rằng Cygnus là lỗ đen. Và bây giờ tôi có thể nói rằng chúng tôi đã biết chắc tới 95%, nhưng cuộc đánh cuộc vẫn chưa thể xem là đã ngã ngũ.

Giờ đây chúng ta cũng có bằng chứng về một số lỗ đen khác trong các hệ thống giống như Cygnus X-1 trong thiên hà của chúng ta và trong hai thiên hà lân cận có tên là Magellanic Clouds. Tuy nhiên, số các lỗ đen chắc còn cao hơn nhiều; trong lịch sử dài dằng dặc của vũ trụ nhiều ngôi sao chắc đã đốt hết toàn bộ nhiên liệu hạt nhân của mình và đã phải co lại. Số các lỗ đen có thể lớn hơn nhiều so với số những ngôi sao nhìn thấy, mà chỉ riêng trong thiên hà của chúng ta thôi số những ngôi sao đó đã tới khoảng một trăm ngàn triệu. Lực hút hấp dẫn phụ thêm của một số lớn như thế các lỗ đen có thể giải thích được tại sao thiên hà của chúng ta lại quay với tốc độ như nó hiện có: khối lượng của các sao thấy được không đủ để làm điều đó. Chúng ta cũng có một số bằng chứng cho thấy rằng có một lỗ đen lớn hơn nhiều ở trung tâm thiên hà của chúng ta với khối lượng lớn hơn khối lượng của mặt trời tới trăm ngàn lần. Các ngôi sao trong thiên hà tới gần lỗ đen đó sẽ bị xé tan do sự khác biệt về hấp dẫn ở phía gần và phía xa của nó. Tàn tích của những ngôi sao đó và khí do các sao khác tung ra đều sẽ rơi về phía lỗ đen. Cũng như trong trường hợp Cygnus X-1, khí sẽ chuyển động theo đường xoắn ốc đi vào và nóng lên mặc dù không nhiều như trong trường hợp đó. Nó sẽ không đủ nóng để phát ra các tia X, nhưng cũng có thể là các nguồn sóng radio và tia hồng ngoại rất đậm đặc mà người ta đã quan sát được ở tâm thiên hà.

Người ta cho rằng những lỗ đen tương tự hoặc thậm chí còn lớn hơn, với khối lượng khoảng trăm triệu lần lớn hơn khối lượng mặt trời có thể gặp ở tâm các quasar. Vật chất rơi vào những lỗ đen siêu nặng như vậy sẽ tạo ra một nguồn năng lượng duy nhất đủ lớn để giải thích lượng năng lượng cực lớn mà các vật thể đó phát ra. Vì vật chất chuyển động xoáy ốc vào lỗ đen, nó sẽ làm cho lỗ đen quay cùng chiều tạo cho nó một từ trường khá giống với từ trường của trái đất. Các hạt có năng lượng rất cao cũng sẽ được sinh ra gần lỗ đen bởi vật chất rơi vào. Từ trường này có thể mạnh tới mức hội tụ được các hạt đó thành những tia phóng ra ngoài dọc theo trục quay của lỗ đen, tức là theo hướng các cực bắc và nam của nó. Các tia như vậy thực tế đã được quan sát thấy trong nhiều thiên hà và các quasar.

Người ta cũng có thể xét tới khả năng có những lỗ đen với khối lượng nhỏ hơn nhiều so với khối lượng mặt trời. Những lỗ đen như thế không thể được tạo thành bởi sự co lại do hấp dẫn, vì khối lượng của chúng thấp hơn giới hạn Chandrasekhar: Các sao có khối lượng thấp đó tự nó có thể chống chọi được với lực hấp dẫn thậm chí cả khi chúng đã hết sạch nhiên liệu hạt nhân. Do vậy, những lỗ đen khối lượng thấp đó chỉ có thể được tạo thành nếu vật chất của nó được nén đến mật độ cực lớn bởi một áp lực rất cao từ bên ngoài. Điều kiện như thế có thể xảy ra trong một quả bom khinh khí rất lớn: nhà vật lý John Wheeler một lần đã tính ra rằng nếu ta lấy toàn bộ nước nặng trong tất cả các đại dương thì ta có thể chế tạo được quả bom khinh khí có thể nén được vật chất ở tâm mạnh tới mức có thể tạo nên một lỗ đen. (Tất nhiên sẽ chẳng còn ai sống sót mà quan sát điều đó!). Một khả năng khác thực tiễn hơn là các lỗ đen có khối lượng thấp có thể được tạo thành dưới nhiệt độ và áp suất cao ở giai đoạn rất sớm của vũ trụ. Mặt khác những lỗ đen chỉ có thể tạo thành nếu vũ trụ ở giai đoạn rất sớm không trơn tru và đều đặn một cách lý tưởng, bởi vì chỉ cần một vùng nhỏ có mật độ lớn hơn mật độ trung bình là có thể bị nén theo cách đó để tạo thành lỗ đen. Nhưng chúng ta biết rằng nhất thiết phải có một số bất thường như vậy, bởi vì nếu không vật chất trong vũ trụ cho tới nay vẫn sẽ còn phân bố đều một cách lý tưởng thay vì kết lại thành khối trong các ngôi sao và thiên hà.

Những bất thường đòi hỏi phải có để tạo ra các ngôi sao và thiên hà có dẫn tới sự tạo thành một số đáng kể “lỗ đen nguyên thủy” hay không còn phụ thuộc vào chi tiết của những điều kiện ở giai đoạn đầu của vũ trụ. Vì vậy, nếu hiện nay chúng ta có thể xác định được có bao nhiêu lỗ đen nguyên thủy thì chúng ta sẽ biết được nhiều điều về những giai đoạn rất sớm của vũ trụ. Các lỗ đen nguyên thủy với khối lượng lớn hơn ngàn triệu tấn (bằng khối lượng của một quả núi lớn) có thể được phát hiện chỉ thông qua ảnh hưởng hấp dẫn của chúng lên các vật thể khác là vật chất thấy được hoặc ảnh hưởng tới sự giãn nở của vũ trụ. Tuy nhiên, như chúng ta sẽ biết ở chương sau, các lỗ đen xét cho cùng cũng không phải quá đen: chúng phát sáng như những vật nóng, và các lỗ đen càng nhỏ thì chúng phát sáng càng mạnh. Và như vậy một điều thật nghịch lý là các lỗ đen càng nhỏ thì càng dễ phát hiện hơn các lỗ đen lớn.

Chương 7: Lỗ đen không quá đen
Trước năm 1970, nghiên cứu của tôi về thuyết tương đối rộng chủ yếu tập trung vào vấn đề có tồn tại hay không kỳ dị vụ nổ lớn. Tuy nhiên, vào một buổi tối tháng 11 năm đó, ngay sau khi con gái tôi, cháu Lucy, ra đời, tôi bắt đầu suy nghĩ về những lỗ đen khi tôi trên đường về phòng ngủ. Vì sự tàn tật của mình, tôi di chuyển rất chậm, nên có đủ thời gian để suy nghĩ. Vào thời đó còn chưa có một định nghĩa chính xác cho biết những điểm nào của không-thời gian là nằm trong, và những điểm nào là nằm ngoài lỗ đen. Tôi đã thảo luận với Roger Penrose ý tưởng định nghĩa lỗ đen như một tập hợp mà các sự cố không thể thoát ra khỏi nó để đến những khoảng cách lớn, và bây giờ nó đã trở thành một định nghĩa được mọi người chấp nhận. Điều này có nghĩa là biên giới của lỗ đen, cũng gọi là chân trời sự cố, được tạo bởi đường đi trong không-thời gian của các tia sáng vừa chớm không thoát ra được khỏi lỗ đen, và vĩnh viễn chơi vơi ở mép của nó (hình 7.1). Nó cũng gần giống như trò chơi chạy trốn cảnh sát, chỉ hơi vượt trước được một bước nhưng còn chưa thể bứt ra được.

Bất chợt tôi nhận ra rằng đường đi của các tia sáng ấy không bao giờ có thể tiến tới gần nhau. Vì nếu không thế, cuối cùng chúng cũng sẽ phải chập vào nhau. Điều này cũng giống như đón gặp một người bạn đang phải chạy trốn cảnh sát ở phía ngược lại - rốt cuộc cả hai sẽ đều bị bắt! (Hay trong trường hợp của chúng ta cả hai tia sáng sẽ đều bị rơi vào lỗ đen). Nhưng nếu cả hai tia sáng đó đều bị nuốt bởi lỗ đen, thì chúng không thể ở biên giới của lỗ đen được. Như vậy đường đi của các tia sáng trong chân trời sự cố phải luôn luôn song song hoặc đi ra xa nhau. Một cách khác để thấy điều này là chân trời sự cố - biên giới của lỗ đen - giống như mép của một cái bóng - bóng của số phận treo lơ lửng. Nếu bạn nhìn cái bóng tạo bởi một nguồn sáng ở rất xa, chẳng hạn như mặt trời, bạn sẽ thấy rằng các tia sáng ở mép của nó không hề tiến tới gần nhau.

Nếu các tia sáng tạo nên chân trời sự cố - biên giới của lỗ đen - không bao giờ có thể tiến tới gần nhau, thì diện tích của chân trời sự cố có thể giữ nguyên không đổi hoặc tăng theo thời gian chứ không bao giờ giảm, vì nếu không, ít nhất sẽ có một số tia sáng trên biên phải tiến gần tới nhau. Thực tế thì diện tích sẽ tăng bất cứ khi nào có vật chất hoặc bức xạ rơi vào lỗ đen (hình7.2). Hoặc nếu có hai lỗ đen va chạm rồi xâm nhập vào nhau tạo thành một lỗ đen duy nhất, thì diện tích chân trời sự cố của lỗ đen tạo thành sẽ lớn hơn hoặc bằng tổng diện tích chân rời sự cố của hai lỗ đen riêng lẻ ban đầu (hình 7.3). Tính không giảm đó của diện tích chân trời sự cố đã đặt một hạn chế quan trọng đối với hành vi khả dĩ của các lỗ đen. Tôi đã xúc động về phát minh của mình tới mức đêm đó tôi không sao chợp mắt được. Ngay hôm sau tôi gọi điện cho Roger Penrose. Ông đã đồng ý với tôi. Thực tế, tôi nghĩ rằng chính ông cũng đã ý thức được tính chất đó của diện tích chân trời sự cố. Tuy nhiên, ông đã dùng một định nghĩa hơi khác của lỗ đen. Ông không thấy được rằng biên giới của các lỗ đen theo hai định nghĩa đó thực chất là như nhau, và do đó, diện tích của chúng cũng như nhau với điều kiện lỗ đen đã an bài ở trạng thái không thay đổi theo thời gian.

Tính chất không giảm của diện tích lỗ đen rất giống với tính chất của một đại lượng vật lý có tên là entropy - đại lượng là thước đo mức độ mất trật tự của một hệ thống. Kinh nghiệm hàng ngày cũng cho chúng ta biết rằng nếu để các vật tự do thì mức độ mất trật tự sẽ có xu hướng tăng. (Chỉ cần ngừng sửa chữa xung quanh là bạn sẽ thấy điều đó ngay!). Người ta có thể tạo ra trật tự từ sự mất trật tự (ví dụ như bạn có thể quét sơn lại nhà), nhưng điều đó yêu cầu phải tốn sức lực hoặc năng lượng, và như vậy có nghĩa là sẽ làm giảm lượng năng lượng của trật tự sẵn có.

Phát biểu chính xác ý tưởng này chính là Định luật II của nhiệt động học. Định luật đó phát biểu rằng: entropy của một hệ cô lập luôn luôn tăng, và rằng khi hai hệ hợp lại với nhau làm một thì entropy của hệ hợp thành sẽ lớn hơn tổng entropy của hai hệ riêng rẽ. Ví dụ, xét một hệ phân tử khí đựng trong một cái hộp. Có thể xem những phân tử như những quả cầu billard nhỏ, liên tục va chạm với nhau và với thành hộp. Nhiệt độ của khí càng cao thì các phân tử chuyển động càng nhanh, và chúng va chạm càng thường xuyên và càng mạnh với thành hộp, và áp suất chúng đè lên thành hộp càng lớn. Giả sử rằng ban đầu tất cả các phân tử bị giam ở nửa trái của hộp bằng một vách ngăn. Nếu bỏ vách ngăn đi, các phân tử sẽ có xu hướng tràn ra chiếm cả hai nửa của hộp. Ở một thời điểm nào đó sau đấy, do may rủi, có thể tất cả các phân tử sẽ dồn cả sang nửa phải hoặc trở lại nửa trái của hộp, nhưng khả năng chắc chắn hơn rất nhiều là chúng có số lượng gần bằng nhau ở cả hai nửa hộp. Một trạng thái kém trật tự hơn, hay nói cách khác là mất trật tự hơn, trạng thái ban đầu mà trong đó mọi phân tử chỉ ở trong một nửa hộp. Do đó, người ta nói rằng entropy của khí đã tăng lên. Tương tự, giả sử rằng ta bắt đầu với hai hộp, một hộp chứa các phân tử ôxy và một hộp chứa các phân tử nitơ. Nếu người ta ghép hai hộp với nhau và bỏ vách ngăn đi thì các phân tử ôxy và nitơ sẽ bắt đầu trộn lẫn vào nhau. Ở một thời điểm nào đó sau đấy, trạng thái có xác suất lớn nhất sẽ là sự trộn khá đều các phân tử ôxy và nitơ trong cả hai hộp. Trạng thái đó là kém trật tự hơn trạng thái ban đầu của hai hộp riêng rẽ.

Định luật thứ hai của nhiệt dộng học có vị trí hơi khác so với các định luật khoa học khác, chẳng hạn như định luật hấp dẫn của Newton, bởi vì nó không phải luôn luôn đúng, mà chỉ đúng trong đại đa số các trường hợp mà thôi. Xác suất để tất cả các phân tử trong hộp đầu tiên của chúng ta dồn cả về một nửa của hộp ở thời điểm sau khi bỏ vách ngăn chỉ bằng một phần nhiều triệu triệu, nhưng nó vẫn có thể xảy ra. Tuy nhiên, nếu có một lỗ đen ở cạnh thì định luật đó dường như sẽ bị vi phạm khá dễ dàng: chỉ cần ném một số vật chất có lượng entropy lớn, như một hộp khí chẳng hạn, vào lỗ đen. Khi đó tổng số entropy của vật chất ở ngoài lỗ đen sẽ giảm. Tất nhiên, người ta vẫn còn có thể viện lý rằng entropy tổng cộng, kể cả entropy trong lỗ đen sẽ không giảm, nhưng vì không có cách gì để nhìn vào lỗ đen, nên chúng ta không thể thấy được vật chất trong đó chứa bao nhiêu entropy. Khi này sẽ thật là tuyệt vời nếu có một đặc tính nào đó của lỗ đen, mà qua nó, người quan sát ở bên ngoài có thể biết về entropy của lỗ đen, và đặc tính này lại tăng bất cứ khi nào có một lượng vật chất mang entropy rơi vào lỗ đen. Sự phát hiện vừa mô tả ở trên cho thấy rằng diện tích của chân trời sự cố sẽ tăng bất cứ khi nào có một lượng vật chất rơi vào lỗ đen. Một nghiên cứu sinh ở Princeton tên là Jacod Bekenstein đã đưa ra giả thuyết rằng diện tích của chân trời sự cố chính là thước đo entropy của lỗ đen. Khi vật chất mang entropy rơi vào lỗ đen, diện tích của chân trời sự cố tăng, nên tổng entropy của vật chất ngoài lỗ đen và diện tích chân trời sự cố sẽ không khi nào giảm.

Giả thuyết này dường như đã tránh cho định luật thứ hai nhiệt động học không bị vi phạm trong hầu hết mọi tình huống. Tuy nhiên, vẫn còn một khe hở tai hại. Nếu lỗ đen có entropy thì nó cũng sẽ phải có nhiệt độ. Nhưng một vật có nhiệt độ thì sẽ phải phát xạ với tốc độ nào đó. Kinh nghiệm hàng ngày cũng cho thấy rằng nếu người ta nung nóng một que cời trong lửa thì nó sẽ nóng đỏ và bức xạ, nhưng những vật ở nhiệt độ thấp cũng bức xạ, chỉ có điều lượng bức xạ khá nhỏ nên người ta thường không nhìn thấy mà thôi. Bức xạ này đòi hỏi phải có để tránh cho định luật thứ hai khỏi bị vi phạm. Như vậy, các lỗ đen cũng cần phải bức xạ. Nhưng theo chính định nghĩa của nó thì lỗ đen là vật được xem là không phát ra gì hết. Và do đó, dường như diện tích của chân trời sự cố không thể xem như entropy của lỗ đen. Năm 1972 cùng với Bradon Carte và một đồng nghiệp Mỹ Jim Bardeen, tôi đã viết một bài báo trong đó chỉ ra rằng mặc dù có nhiều điểm tương tự giữa diện tích của chân trời sự cố và entropy nhưng vẫn còn khó khăn đầy tai hại đó. Tôi cũng phải thú nhận rằng khi viết bài báo đó tôi đã bị thúc đẩy một phần bởi sự bực tức đối với Bekenstein, người mà tôi cảm thấy đã lạm dụng phát hiện của tôi về diện tích của chân trời sự cố. Tuy nhiên, cuối cùng hóa ra anh ta về căn bản lại là đúng, mặc dù ở một mức độ mà chính anh ta cũng không ngờ.

Tháng 9 năm 1973, trong thời gian đến thăm Matxcơva, tôi đã thảo luận về các lỗ đen với hai chuyên gia hàng đầu của Liên Xô là Yakov Zedovich và Alexander Starobinsky. Họ khẳng định với tôi rằng theo nguyên lý bất động của cơ học lượng tử thì các lỗ đen quay cần phải sinh và phát ra các hạt. Tôi tin cơ sở vật lý trong lý lẽ của họ, nhưng tôi không thích phương pháp toán học mà họ sử dụng để tính toán sự phát xạ hạt. Do đó, tôi đã bắt tay vào tìm tòi một cách xử lý toán học tốt hơn mà tôi đã trình bày tại seminar thông báo ở Oxford vào cuối tháng 11 năm 1973. Vào thời gian đó, tôi còn chưa tiến hành tính toán để tìm ra sự phát xạ là bao nhiêu. Tôi chờ đợi người ta sẽ phát hiện được chính bức xạ từ các lỗ đen quay mà Zedovich và Starobinsky đã tiên đoán. Tuy nhiên, khi tính song tôi vô cùng ngạc nhiên và băn khoăn thấy rằng thậm chí cả các lỗ đen không quay dường như cũng sinh và phát ra các hạt với tốc độ đều. Thoạt tiên, tôi nghĩ rằng đó là dấu hiệu cho biết một trong những phép gần đúng mà tôi sử dụng là không thỏa đáng. Tôi ngại rằng nếu Bekenstein phát hiện ra điều đó, anh ta sẽ dùng nó như một lý lẽ nữa để củng cố ý tưởng của anh ta về entropy của các lỗ đen, điều mà tôi vẫn còn không thích. Tuy nhiên, càng suy nghĩ tôi càng thấy những phép gần đúng đó thực sự là đúng đắn. Nhưng điều đã thuyết phục hẳn được tôi rằng sự phát xạ là có thực là: phổ của các hạt bức xạ giống hệt như phổ phát xạ của vật nóng, và các lỗ đen phát ra các hạt với tốc độ chính xác để không vi phạm định luật thứ hai. Sau đó, những tính toán đã được lặp đi lặp lại dưới nhiều dạng khác nhau và bởi những người khác. Tất cả họ đều khẳng định rằng lỗ đen cần phải phát ra các hạt và bức xạ hệt như nó là một vật nóng với nhiệt độ chỉ phụ thuộc vào khối lượng của nó: khối lượng càng lớn thì nhiệt độ càng thấp.

Nhưng làm sao các lỗ đen lại có thể phát ra các hạt trong khi chúng ta biết được rằng không có vật gì từ phía trong có thể thoát ra khỏi chân trời sự cố? Câu trả lời mà cơ học lượng tử nói với chúng ta là: các hạt không phát ra từ bên trong lỗ đen mà là từ không gian “trống rỗng” ở ngay bên ngoài chân trời sự cố của lỗ đen! Chúng ta có thể hiểu điều này như sau: cái mà chúng ta quen nghĩ là không gian “trống rỗng” lại không thể hoàn toàn là trống rỗng, bởi vì điều đó có nghĩa là tất cả các trường như trường hấp dẫn và trường điện từ sẽ cần phải chính xác bằng 0. Tuy nhiên, giá trị của trường và tốc độ thay đổi của nó theo thời gian cũng giống như vị trí và vận tốc của hạt: nguyên lý bất định buộc rằng nếu người ta biết một trong hai đại lượng đó càng chính xác thì có thể biết về đại lượng kia càng kém chính xác! Vì vậy trong không gian trống rỗng, trường không cố định ở giá trị chính xác bằng 0, bởi vì nếu trái lại thì trường sẽ có cả giá trị chính xác (bằng 0) và tốc độ thay đổi cũng trị chính xác (bằng 0). Cần phải có một lượng bất định tối thiểu nào đó, hay người ta nói rằng, có những thăng giáng lượng tử trong giá trị của trường. Người ta có thể xem những thăng giáng đó như một cặp hạt ánh sáng hoặc hấp dẫn cùng xuất hiện ở một thời điểm nào đó, đi ra xa nhau rồi lại gặp lại và hủy nhau. Những hạt này là những hạt ảo giống như các hạt mang lực hấp dẫn của mặt trời: không giống các hạt thực, chúng không thể quan sát được một cách trực tiếp bằng máy dò hạt. Tuy nhiên, những hiệu ứng gián tiếp của chúng, chẳng hạn những thay đổi nhỏ về năng lượng của các quỹ đạo electron trong nguyên tử, đều có thể đo được và phù hợp với những tính toán lý thuyết với một mức độ chính xác rất cao. Nguyên lý bất định cũng tiên đoán rằng, có cả những cặp hạt vật chất như electron hoặc quark là ảo. Tuy nhiên, trong trường hợp này một thành viên của cặp là hạt, còn thành viên kia là phản hạt (các phản hạt của ánh sáng và hấp dẫn giống hệt như hạt).

Vì năng lượng không thể sinh ra từ hư vô, nên một trong các thành viên của cặp hạt/phản hạt sẽ có năng lượng dương và thành viên kia sẽ có năng lượng âm. Thành viên có năng lượng âm buộc phải là hạt ảo có thời gian sống ngắn, vì các hạt thực luôn luôn có năng lượng dương trong các tình huống thông thường. Do đó hạt ảo này phải đi tìm thành viên cùng cặp để hủy cùng với nó. Tuy nhiên, một hạt thực ở gần một vật nặng sẽ có năng lượng nhỏ hơn so với khi nó ở xa, bởi vì khi đưa nó ra xa cần phải tốn năng lượng để chống lại lực hút hấp dẫn của vật đó. Thường thường, năng lượng của hạt vẫn còn là dương, nhưng trường hợp hấp dẫn trong lỗ đen mạnh tới mức thậm chí một hạt thực ở đó cũng có năng lượng âm. Do đó, khi có mặt lỗ đen, hạt ảo với năng lượng âm khi rơi vào lỗ đen cũng có thể trở thành hạt thực hoặc phản hạt thực. Trong trường hợp đó, nó không còn cần phải hủy với bạn cùng cặp của nó nữa. Người bạn bị bỏ rơi này cũng có thể rơi vào lỗ đen, hoặc khi có năng lượng dương, nó cũng có thể thoát ra ngoài vùng lân cận của lỗ đen như một hạt thực hoặc phản hạt thực (hình 7.4). Đối với người quan sát ở xa thì dường như nó được phát ra từ lỗ đen. Lỗ đen càng nhỏ thì khoảng cách mà hạt có năng lượng âm cần phải đi trước khi trở thành hạt thực sẽ càng ngắn và vì vậy tốc độ phát xạ và nhiệt độ biểu kiến của lỗ đen càng lớn.

Năng lượng dương của bức xạ đi ra sẽ được cân bằng bởi dòng hạt năng lượng âm đi vào lỗ đen. Theo phương trình Einstein E = mc2 (ở đây E là năng lượng, m là khối lượng và c là vận tốc độ sáng), năng lượng tỷ lệ với khối lượng. Do đó, dòng năng lượng âm đi vào lỗ đen sẽ giảm giảm khối lượng của nó. Vì lỗ đen mất khối lượng nên diện tích chân trời sự cố sẽ nhỏ đi, nhưng sự giảm đó của entropy được bù lại còn nhiều hơn bởi entropy của bức xạ phát ra, vì vậy định luật thứ hai sẽ không khi nào bị vi phạm.

Hơn nữa, khối lượng của lỗ đen càng nhỏ thì nhiệt độ của nó càng cao. Như vậy, vì lỗ đen mất khối lượng nên nhiệt độ và tốc độ bức xạ của nó tăng, dẫn tới nó mất khối lượng còn nhanh hơn nữa. Điều gì sẽ xảy ra khi khối lượng của lỗ đen cuối cùng cũng trở nên cực kỳ nhỏ hiện vẫn còn chưa rõ, nhưng sẽ rất có lý khi chúng ta phỏng đoán rằng nó sẽ hoàn toàn biến mất trong sự bùng nổ bức xạ khổng lồ cuối cùng, tương đương với sự bùng nổ của hàng triệu quả bom H.

Lỗ đen có khối lượng lớn hơn khối lượng của mặt trời một ít lần sẽ có nhiệt độ chỉ khoảng một phần mười triệu độ trên không độ tuyệt đối. Nó nhỏ hơn nhiều so với nhiệt độ của các bức xạ sóng cực ngắn choán đầy vũ trụ (khoảng 2,7 K), vì thế những lỗ đen này phát xạ thậm chí còn ít hơn hấp thụ. Nếu vũ trụ được an bài là sẽ giãn nở mãi mãi, thì nhiệt độ của các bức xạ sóng cực ngắn cuối cùng sẽ giảm tới mức nhỏ hơn nhiệt độ của lỗ đen và lỗ đen khi đó sẽ bắt đầu mất khối lượng. Nhưng ngay cả khi đó thì nhiệt độ của nó vẫn thấp đến mức cần khoảng 1 triệu triệu triệu triệu triệu triệu triệu triệu triệu triệu triệu (1 với sáu mươi sáu số không đứng sau) năm để lỗ đen bay hơi hoàn toàn. Con số đó lớn hơn nhiều tuổi của vũ trụ bằng 1 hoặc 2 và 10 con số không đứng sau (tức khoảng 10 hoặc 20 ngàn triệu năm).

Mặt khác như đã nói ở Chương 6 có thể những lỗ đen nguyên thủy được tạo thành bởi sự co lại của những bất thường trong giai đoạn rất sớm của vũ trụ. Những lỗ đen nguyên thủy với khối lượng ban đầu cỡ ngàn triệu tấn sẽ có thời gian sống xấp xỉ tuổi của vũ trụ. Những lỗ đen nguyên thủy với khối lượng nhỏ hơn con số đó chắc là đã bốc hơi hoàn toàn, nhưng những lỗ đen với khối lượng hơi lớn hơn sẽ vẫn còn đang tiếp tục phát xạ dưới dạng tia X hoặc tia gamma. Các tia X và tia gamma này giống như ánh sáng chỉ có điều bước sóng của chúng ngắn hơn nhiều. Những lỗ như thế khó mà gán cho cái nhãn là đen: chúng thực sự nóng trắng và phát năng lượng với tốc độ khoảng mười ngàn mega oat.

Một lỗ đen như vậy có thể cung cấp đủ năng lượng cho mười nhà máy điện lớn, nếu chúng ta biết cách khai thác nó. Tuy nhiên việc này chẳng phải dễ dàng gì: lỗ đen đó có khối lượng bằng cả một quả núi bị nén lại tới kích thước nhỏ hơn một phần triệu triệu của inch, nghĩa là cỡ kích thước của hạt nhân nguyên tử! Nếu bạn có một lỗ đen như thế trên mặt đất, bạn sẽ không có cách nào giữ cho nó khỏi rơi xuyên qua sàn nhà xuống tới tâm trái đất. Nó sẽ dao động xuyên qua trái đất cho tới khi cuối cùng đậu lại ở tâm. Như vậy chỗ duy nhất đặt được một lỗ đen như vậy để có thể khai thác năng lượng do nó bức xạ ra là ở trên một quỹ đạo quay xung quanh trái đất và cách duy nhất có thể đưa nó lên quỹ đạo ấy là hút nó tới đó bằng cách kéo một khối lượng lớn phía trước nó hệt như dùng củ cà rốt nhử con lừa. Điều này xem ra không phải là một đề nghị thực tế lắm, ít nhất cũng là trong tương lai gần.

Nhưng thậm chí nếu chúng ta không thể khai thác được sự phát xạ từ các lỗ đen nguyên thủy thì liệu chúng ta có cơ may quan sát được chúng không? Chúng ta có thể tìm kiếm các tia gamma mà các lỗ đen nguyên thủy phát ra trong hầu hết thời gian sống của chúng. Mặc dù phát xạ từ phần lớn các lỗ đen đều mờ nhạt vì chúng ở quá xa, nhưng tổng số của chúng thì có thể phát hiện được. Chúng ta hãy quan sát kỹ một nền tia gamma như vậy:

Hình 7.5 cho thấy cường độ quan sát được khác nhau ở những tần số khác nhau. Tuy nhiên, nền tia gamma này có thể và chắc là được sinh ra bởi những quá trình khác hơn là bởi các lỗ đen nguyên thủy. Đường chấm chấm trên Hình 7.5 cho thấy cường độ phải biến thiên thế nào theo tần số đối với các tia gamma do lỗ đen nguyên thủy gây ra nếu trung bình có 300 lỗ đen như thế trong một năm - ánh sáng khối. Do đó người ta có thể nói rằng những quan sát nền tia gamma không cho một bằng chứng khẳng định nào về các lỗ đen nguyên thủy, nhưng chúng cho chúng ta biết trong vũ trụ về trung bình không thể có hơn 300 lỗ đen như thế trong một năm - ánh sáng khối. Giới hạn đó có nghĩa là các lỗ đen nguyên thủy có thể tạo nên nhiều nhất là một phần triệu số vật chất của vũ trụ.

Với các lỗ đen nguyên thủy phân bố thưa thớt như vậy khó mà có khả năng một lỗ đen như thế ở đủ gần chúng ta để có thể quan sát nó như một nguồn tia gamma riêng rẽ. Nhưng vì lực hấp dẫn sẽ kéo lỗ đen nguyên thủy tới gần vật chất nên chúng sẽ thường gặp nhiều hơn ở trong hay gần các thiên hà. Như vậy, mặc dù nền tia gamma cho chúng ta biết rằng trung bình không thể có hơn 300 lỗ đen như thế trong một năm - ánh sáng khối nhưng nó lại chẳng cho chúng ta biết gì về tần suất gặp chúng trong thiên hà của chúng ta. Chẳng hạn nếu như chúng một triệu lần thường gặp hơn con số trung bình thì lỗ đen gần chúng ta nhất chắc cũng phải cách chúng ta chừng một ngàn triệu km, tức là xa như sao Diêm vương, hành tinh xa nhất mà chúng ta biết. Ở khoảng cách đó vẫn còn rất khó phát hiện bức xạ đều của một lỗ đen ngay cả khi nó là mười ngàn mega oát. Để quan sát được một lỗ đen nguyên thủy người ta phải phát hiện được một vài lượng tử gamma tới từ chính hướng đó trong một khoảng thời gian hợp lý, chẳng hạn như một tuần lễ. Nếu không, chúng chỉ là một phần của phông. Nhưng nguyên lý lượng tử của Planck cho chúng ta biết rằng mỗi một lượng tử gamma có năng lượng rất cao, vì tia gamma có tần số rất cao, nếu thậm chí nó có phát xạ với công suất 10 ngàn mega oát thì cũng không phải có nhiều lượng tử. Và để quan sát được một số lượng tử, lại tới từ khoảng cách rất xa như sao Diêm vương, đòi hỏi phải có một máy dò lớn hơn bất cứ máy dò nào đã được chế tạo cho tới nay. Hơn nữa máy dò này lại phải đặt trong không gian vũ trụ vì các tia gamma không thể thâm nhập qua bầu khí quyển.

Tất nhiên nếu một lỗ đen ở cách xa như sao Diêm vương đã đến ngày tận số và bùng nổ thì sẽ dễ dàng phát hiện được sự bùng nổ bức xạ của nó. Nhưng nếu lỗ đen đó liên tục bức xạ trong khoảng 10 hoặc 20 ngàn triệu năm trở lại đây thì xác suất để nó tận số trong vòng ít năm tới thực sự là rất nhỏ! Vì vậy, để có một cơ may hợp lý nhìn thấy vụ nổ của lỗ đen trước khi tiền trợ cấp nghiên cứu của bạn tiêu hết thì bạn phải tìm cách phát hiện những vụ nổ ở trong khoảng cách một năm ánh sáng. Bạn vẫn phải giải quyết vấn đề có một máy dò tia gamma lớn có thể phát hiện được một vài lượng tử gamma tới từ vụ nổ đó. Tuy nhiên, trong trường hợp này sẽ không cần phải xác định rằng tất cả các lượng tử tới cùng một hướng: chỉ cần quan sát thấy tất cả chúng đều tới trong một khoảng thời gian ngắn là có thể tin được rằng chúng tới từ cùng một vụ bùng nổ.

Một máy dò tia gamma có khả năng phát hiện ra các lỗ đen nguyên thủy chính là toàn bộ bầu khí quyển của trái đất. (Trong mọi trường hợp chúng ta không thể chế tạo được một máy dò lớn hơn). Khi một lượng tử gamma năng lượng cao đập vào các nguyên tử trong khí quyển, nó sẽ tạo ra cặp electron và positron (tức là phản - electron). Khi các hạt này đập vào các nguyên tử khác, đến lượt mình, chúng sẽ tạo ra các cặp electron và positron nữa, và như vậy người ta sẽ thu được cái gọi là mưa electron. Kết quả là một dạng ánh sáng có tên là bức xạ Cherenkov. Do đó, người ta có thể phát hiện ra sự bùng nổ tia gamma bằng cách tìm các chớp sáng trong bầu trời đêm. Tất nhiên có nhiều hiện tương khác như chớp hoặc sự phản xạ ánh sáng từ các vệ tinh rơi xuống hoặc các mảnh vỡ trên quỹ đạo cũng có thể tạo ra các chớp sáng trên bầu trời. Người ta có thể phân biệt sự bùng nổ tia gamma với các hiện tượng đó bằng cách quan sát các chớp sáng đồng thời ở hai hoặc nhiều vị trí ở cách rất xa nhau. Một thí nghiệm như thế đã được hai nhà khoa học ở Dublin là Neil Porter và Trevor Wecks thực hiện khi dùng các kính thiên văn ở Arizona. Họ đã tìm thấy nhiều chớp sáng nhưng không có cái nào có thể gán một cách chắc chắn cho sự bùng nổ tia gamma từ các lỗ đen nguyên thủy.

Ngay cả khi nếu việc tìm kiếm các lỗ đen nguyên thủy không có kết quả, vì điều này vẫn có thể xảy ra, thì nó vẫn cho chúng ta những thông tin quan trọng về những giai đoạn rất sớm của vũ trụ. Nếu vũ trụ ở giai đoạn rất sớm là hỗn loạn và bất thường hoặc nếu áp suất vật chất là thấp thì người ta có thể nghĩ rằng nó đã tạo ra nhiều lỗ đen nguyên thủy hơn là giới hạn đã được xác lập dựa trên những quan sát về phông tia gamma. Chỉ nếu ở giai đoạn rất sớm, vũ trụ là rất trơn tru và đều đặn với áp suất cao thì người ta mới có thể giải thích được tại sao lại không có nhiều lỗ đen nguyên thủy.

Ý tưởng về bức xạ phát từ các lỗ đen là một ví dụ đầu tiên về sự tiên đoán phụ thuộc một cách căn bản vào cả hai lý thuyết lớn của thế kỷ chúng ta: thuyết tương đối rộng và cơ học lượng tử. Nó đã gặp nhiều ý kiến phản đối lúc đầu vì nó đảo lộn quan điểm hiện thời “làm sao lỗ đen lại phát ra cái gì đó?”. Khi lần đầu tiên tôi công bố các kết quả tính toán của tôi tại một hội nghị ở Phòng thì nghiệm Rurtherford - Appleton gần Oxford, tôi đã được chào đón bằng sự hoài nghi của hầu hết mọi người. Vào lúc kết thúc bản báo cáo của tôi, vị chủ tọa phiên họp, ông John Taylor của trường Kings College, London đã đứng dậy tuyên bố rằng tất cả những thứ đó là vô nghĩa. Thậm chí ông còn viết một bài báo về vấn đề này. Tuy nhiên, rồi cuối cùng, hầu hết mọi người, kể cả ông John Taylo cũng đã đi đến kết luận rằng các lỗ đen cần phải phát bức xạ như các vật nóng, nếu những quan niệm khác của chúng ta về thuyết tương đối rộng và cơ học lượng tử là đúng đắn. Như vậy, mặc dù ngay cả khi chúng ta còn chưa tìm thấy một lỗ đen nguyên thủy nào vẫn có một sự khá nhất trí cho rằng nếu chúng ta phát hiện ra lỗ đen đó thì nó sẽ phải phát ra một lượng lớn tia X và tia gamma.

Sự tồn tại của bức xạ phát ra từ lỗ đen cũng còn ngụ ý rằng sự co lại do hấp dẫn không phải là chấm hết và không thể đảo ngược được như một thời chúng ta đã nghĩ. Nếu một nhà du hành rơi vào một lỗ đen thì khối lượng của nó sẽ tăng, nhưng cuối cùng năng lượng tương đương với khối lượng gia tăng đó sẽ được trả lại cho vũ trụ dưới dạng bức xạ. Như vậy theo một ý nghĩa nào đó nhà du hành vũ trụ của chúng ta đã được luân hồi. Tuy nhiên, đó là một số phận bất tử đáng thương, và quan niệm cá nhân về thời gian của nhà du hành chắc cũng sẽ chấm hết khi anh ta bị xé ra từng mảnh trong lỗ đen! Ngay cả các loại hạt cuối cùng được phát ra từ lỗ đen nói chung cũng sẽ khác với những hạt đã tạo nên nhà du hành: đặc điểm duy nhất còn lại của anh ta chỉ là khối lượng và năng lượng.

Những phép gần đúng mà tôi sử dụng để tính ra sự phát xạ từ lỗ đen vẫn còn hiệu lực tốt khi lỗ đen có khối lượng chỉ lớn hơn một phần của gam. Tuy nhiên chúng sẽ không còn dùng được nữa ở điểm cuối đời của lỗ đen, khi mà khối lượng của nó trở nên cực nhỏ. Kết cục có nhiều khả năng nhất là lỗ đen sẽ biến mất, ít nhất là khỏi vùng vũ trụ của chúng ta mang theo cả nhà du hành và kỳ dị có thể có ở bên trong nó. Đây là chỉ dẫn đầu tiên cho thấy cơ học lượng tử có thể khử các kỳ dị đã được tiên đoán bởi thuyết tương đối rộng. Tuy nhiên các phương pháp mà tôi và những người khác sử dụng vào năm 1974 chưa thể trả lời được cho những câu hỏi, ví dụ như liệu những kỳ dị đó có xuất hiện trong lý thuyết lượng tử hấp dẫn hay không? Do đó từ năm 1975 trở đi tôi đã bắt đầu phát triển một cách tiếp cận mạnh hơn đối với hấp dẫn lượng tử dựa trên ý tưởng của Richard Feynman về phép lấy tổng theo những lịch sử. Câu trả lời mà cách tiếp cận này đưa ra cho nguồn gốc và số phận của vũ trụ và những thứ chứa bên trong nó, chẳng hạn như nhà du hành, sẽ được mô tả ở hai chương sau. Chúng ta sẽ thấy rằng mặc dù nguyên lý bất định đặt những hạn chế về độ chính xác cho tất cả các tiên đoán của chúng ta, nhưng đồng thời nó lại loại bỏ được tính không thể tiên đoán - một tính chất rất cơ bản xảy ra ở điểm kỳ dị của không - thời gian.
Tài sản của mr_robin

Trả Lời Với Trích Dẫn
  #7  
Old 24-08-2008, 09:16 AM
mr_robin's Avatar
mr_robin mr_robin is offline
Cái Thế Ma Nhân
 
Tham gia: May 2008
Đến từ: SG
Bài gởi: 37
Thời gian online: 7 giờ 22 phút 5 giây
Xu: 0
Thanks: 1
Thanked 0 Times in 0 Posts
Chương 6: Lỗ đen
Thuật ngữ lỗ đen còn rất mới. Nó được nhà khoa học người Mỹ John Wheeler đưa ra vào năm 1969 nhằm mô tả một cách hình tượng một ý tưởng bắt nguồn ít nhất khoảng 200 năm trước, vào thời mà còn có hai lý thuyết về ánh sáng: một lý thuyết được Newton ủng hộ cho rằng ánh sáng được tạo thành từ các hạt, còn lý thuyết kia cho rằng nó được tạo thành từ các sóng.

Hiện nay ta biết rằng cả hai lý thuyết trên đều đúng. Theo quan điểm nhị nguyên sóng/hạt của cơ học lượng tử, thì ánh sáng có thể xem như vừa là sóng vừa là hạt. Theo lý thuyết sóng về ánh sáng thì không rõ nó sẽ phản ứng thế nào đối với hấp dẫn. Nhưng nếu ánh sáng được tạo thành từ các hạt thì người ta có thể nghĩ rằng nó sẽ bị tác động bởi hấp dẫn hệt như các viên đạn đại bác, tên lửa và các hành tinh. Ban đầu người ta tưởng rằng ánh sáng truyền với vận tốc lớn vô hạn và như thế thì hấp dẫn không thể nào làm cho nó chậm lại được, nhưng phát minh của Roemer cho thấy ánh sáng truyền với vận tốc hữu hạn, điều đó có nghĩa là hấp dẫn có thể có tác động quan trọng.

Dựa trên giải thuyết đó, một giảng viên của Đại học Cambridge là John Michell đã viết một bài báo in trên tạp chí “những văn kiện triết học của Hội Hoàng gia London” (Philosophical Transaction of the Royal Society of London) vào năm 1783, trong đó ông chỉ ra rằng một ngôi sao đủ nặng và đặc có thể có trường hấp dẫn mạnh tới mức không cho ánh sáng thoát ra được: bất kỳ ánh sáng nào phát ra từ bề mặt ngôi sao đó cũng đều bị kéo ngược trở lại trước khi nó kịp truyền đi rất xa. Michell cho rằng có thể có một số rất lớn những sao như vậy. Mặc dù chúng ta không thể nhìn thấy những ngôi sao đó bởi vì ánh sáng từ những ngôi sao đó không đến được chúng ta, nhưng chúng ta vẫn cảm thấy được lực hút hấp dẫn của chúng. Những đối tượng đó là cái bây giờ chúng ta gọi là lỗ đen, bởi vì thực tế chúng là những khoảng đen trong vũ trụ.

Một giả thuyết tương tự cũng được một nhà khoa học người Pháp là hầu tước de Laplace đưa ra sau đó ít năm, tất nhiên là độc lập với Michell. Một điều khá lý thú là Laplace chỉ đưa ra giả thuyết này vào lần xuất bản thứ nhất và thứ hai của cuốn sách “Hệ thống thế giới”, nhưng rồi lại bỏ đi trong những lần xuất bản sau, chắc ông cho rằng đó là một ý tưởng điên rồ. (Cũng như lý thuyết hạt của ánh sáng không được ủng hộ trong suốt thế kỷ 19, và dường như mọi chuyện đều có thể giải thích bằng lý thuyết sóng, nhưng theo lý thuyết sóng thì hoàn toàn không rõ ánh sáng bị hấp dẫn tác động như thế nào).

Thực tế, xem ánh sáng như những viên đạn đại bác trong lý thuyết hấp dẫn của Newton là hoàn toàn không thích hợp bởi vì ánh sáng có vận tốc cố định. (Một viên đạn đại bác khi bắn lên từ mặt đất sẽ bị lực hấp dẫn làm cho chuyển động chậm lại và cuối cùng sẽ dừng lại và rơi xuống, trong khi đó hạt photon vẫn phải tiếp tục bay lên với vận tốc không đổi. Vậy thì lực hấp dẫn của Newton làm thế nào có thể tác động tới ánh sáng?). Phải mãi cho tới khi Einstein đưa ra thuyết tương đối rộng vào năm 1915, ta mới có một lý thuyết nhất quán cho biết hấp dẫn tác động như thế nào đến ánh sáng. Và thậm chí ngay cả khi đó cũng phải mất một thời gian sau người ta mới hiểu được những hệ quả của lý thuyết đối với các sao nặng.

Để hiểu một lỗ đen có thể được hình thành như thế nào, trước hết chúng ta phải hiểu vòng đời của một ngôi sao. Một ngôi sao được hình thành khi một lượng lớn khí (mà chủ yếu là hydro) bắt đầu co lại do lực hút hấp dẫn của chính mình. Và vì khi các khối khí co lại, nên các nguyên tử khí va chạm nhau thường xuyên hơn và ngày càng có vận tốc lớn hơn dẫn tới khối khí nóng lên. Cuối cùng, khối khí sẽ nóng tới mức khi các nguyên tử hydro va chạm nhau chúng sẽ không rời nhau ra nữa mà liên kết với nhau thành nguyên tử heli. Nhiệt giải phóng ra từ phản ứng này - giống như vụ nổ của bom khinh khí - sẽ làm cho ngôi sao phát sáng. Lượng nhiệt đó cũng làm tăng áp suất của khối khí cho tới khi đủ để cân bằng với lực hút hấp dẫn và khối khí ngừng co lại. Điều này cũng hơi giống với trường hợp quả khí cầu, trong đó có sự cân bằng giữa áp suất của không khí bên trong có xu hướng làm cho quả khí cầu phồng ra và sức căng của vỏ cao su có xu hướng làm cho nó co lại. Những ngôi sao sẽ còn ổn định như thế một thời gian dài với nhiệt từ các phản ứng hạt nhân tỏa ra cân bằng với lực hút hấp dẫn. Tuy nhiên, cuối cùng rồi các ngôi sao cũng sẽ dùng hết số khí hydro và các nhiên liệu hạt nhân của nó. Một điều thật nghịch lý là các ngôi sao càng có nhiều nhiên liệu lúc bắt đầu thì sẽ hết càng sớm. Đó là bởi vì ngôi sao càng nặng thì nó phải càng nóng để cân bằng với lực hút hấp dẫn. Mà nó đã càng nóng thì sẽ dùng hết số nhiên liệu của nó càng nhanh. Mặt trời của chúng ta có lẽ còn đủ nhiên liệu cho khoảng gần năm ngàn triệu năm nữa, nhưng những ngôi sao nặng hơn có thể dùng hết nhiên liệu của chúng chỉ trong khoảng một trăm triệu năm, ít hơn tuổi của vũ trụ rất nhiều. Khi một ngôi sao hết nhiên liệu, nó sẽ lạnh đi và co lại. Chỉ cuối những năm 20, người ta mới hiểu được điều gì xảy ra đối với nó khi đó.

Năm 1928 một sinh viên Ấn Độ mới tốt nghiệp đại học tên là Subrahmanyan Chandrasekhar đã dong thuyền tới nước Anh để theo học nhà thiên văn ngài Arthur Eddington, một chuyên gia về thuyết tương đối rộng ở Cambridge. (Theo một số dư luận, thì một nhà báo vào đầu những năm 20 có nói với Eddington, rằng ông ta nghe nói cả thế giới chỉ có ba người hiểu được thuyết tương đối rộng. Eddington im lặng một lát rồi nói: “Tôi còn đang cố nghĩ xem người thứ ba là ai”). Trong suốt chuyến chu du của mình từ Ấn Độ, Chandrasekhar đã giải quyết được vấn đề: một ngôi sao có thể lớn tới mức nào để khi đã sử dụng hết nhiên liệu vẫn chống chọi được với lực hấp dẫn riêng của nó. Ý tưởng của ông như sau: khi một ngôi sao trở nên nhỏ, các hạt vật chất sẽ ở rất gần nhau, và vì vậy theo nguyên lý loại trừ Pauli, chúng cần phải có vận tốc khác nhau. Điều này làm cho chúng chuyển động ra xa nhau và vì thế có xu hướng làm cho sao giãn nở ra. Do đó một ngôi sao có thể tự duy trì để có một bán kính không đổi bằng cách giữ cân bằng giữa lực hút hấp dẫn và lực đẩy xuất hiện do nguyên lý loại trừ, hệt như ở giai đoạn đầu trong cuộc đời của nó lực hấp dẫn được cân bằng bởi nhiệt.

Tuy nhiên, Chandrasekhar thấy rằng lực đẩy do nguyên lý loại trừ tạo ra có một giới hạn. Lý thuyết tương đối rộng đặt một giới hạn cho sự khác biệt cực đại về vận tốc của các hạt vật chất trong các ngôi sao - đó là vận tốc của ánh sáng. Điều này có nghĩa là khi một ngôi sao đủ đặc, lực đẩy gây bởi nguyên lý loại trừ sẽ nhỏ hơn lực hút hấp dẫn. Chandrasekhar tính ra rằng một ngôi sao lạnh có khối lượng lớn hơn khối lượng mặt trời chừng 1,5 lần sẽ không thể tự chống chọi nổi với lực hấp dẫn riêng của nó. (Khối lượng này hiện nay được gọi là giới hạn Chandrasekhar). Phát minh tương tự cũng được nhà khoa học người Nga Lev Davidovich Landau đưa ra vào cùng thời gian đó.

Điều này có những hệ quả quan trọng đối với số phận tối hậu của các ngôi sao nặng. Nếu khối lượng của một ngôi sao nhỏ hơn giới hạn Chandrasekhar, thì cuối cùng nó cũng có thể ngừng co lại và yên phận ở trạng thái cuối cùng khả dĩ như “một sao lùn trắng” với bán kính chỉ khoảng vài ngàn dặm và mật độ khoảng vài trăm tấn trong một inch khối. Sao lùn trắng chống đỡ được với lực hút hấp dẫn là bởi lực đẩy do nguyên lý loại trừ sinh ra giữa các electron trong vật chất của nó. Chúng ta đã quan sát được một số khá lớn những sao lùn trắng này. Một trong những sao lùn đầu tiên quan sát được là ngôi sao quay xung quanh sao Thiên Lang (Sirius) - ngôi sao sáng nhất trên bầu trời đêm.

Landau chỉ ra rằng còn có một trạng thái cuối cùng khả dĩ nữa cho các ngôi sao có khối lượng giới hạn cỡ 1 đến 2 lần lớn hơn khối lượng mặt trời nhưng có kích thước còn nhỏ hơn cả các sao lùn trắng nhiều. Các sao này chống chọi được với lực hút hấp dẫn, bởi lực đẩy do nguyên lý loại trừ tạo ra giữa các neutron và proton lớn hơn là giữa các electron. Do đó chúng được gọi là các sao neutron. Chúng có bán kính chỉ cỡ mươi dặm và có mật độ cỡ vài trăm triệu tấn trên một inch khối. Khi sao neutron lần đầu tiên được tiên đoán, người ta không có cách nào quan sát được chúng và thực tế mãi rất lâu về sau người ta cũng không phát hiện được.

Trái lại, những ngôi sao có khối lượng lớn hơn giới hạn Chandrasekhar lại có vấn đề rất lớn đặt ra khi chúng đã dùng hết nhiên liệu. Trong một số trường hợp chúng có thể nổ hoặc điều chỉnh để rút bớt đi một lượng vật chất đủ để làm giảm khối lượng của nó xuống dưới giới hạn và như vậy sẽ tránh được tai họa co lại do hấp dẫn. Tuy nhiên, thật khó lòng tin được rằng điều này luôn luôn xảy ra bất kể ngôi sao lớn tới mức nào. Vả lại, làm sao biết được nó cần phải giảm trọng lượng? Và cho dù mọi ngôi sao đều biết điều chỉnh giảm khối lượng đủ để tránh được quá trình co lại thì điều gì sẽ xảy ra nếu ta thêm khối lượng cho một sao lùn trắng hoặc sao neutron để khối lượng của nó lớn hơn khối lượng giới hạn? Liệu nó có co lại tới mật độ vô hạn không? Eddington đã bị “sốc” bởi hệ quả đó và ông đã chối bỏ không tin kết quả của Chandrasekhar. Eddington nghĩ rằng đơn giản là không thể có một ngôi sao có thể co lại thành một điểm được. Đó cũng là quan điểm của đa số các nhà khoa học. Chính Einstein cũng viết một bài báo trong đó ông tuyên bố rằng một ngôi sao không thể co lại tới kích thước bằng 0 được! Trước sự chống đối của các nhà khoa học khác, mà đặc biệt là Eddington - vừa là thầy giáo cũ vừa là người có uy tín hàng đầu về cấu trúc các sao, Chandrasekhar đành bỏ phương hướng nghiên cứu đó của mình và chuyển sang nghiên cứu những vấn đề khác trong thiên văn học như sự chuyển động của các cụm sao. Tuy nhiên, khi ông được trao giải thưởng Nobel vào năm 1938, thì ít nhất cũng một phần là do công trình đầu tay của ông về khối lượng giới hạn của các sao lạnh.

Chandrasekhar đã chứng minh được rằng nguyên lý loại trừ không thể ngăn chặn được sự co lại của các ngôi sao có khối lượng lớn hơn giới hạn Chandrasekhar, nhưng vấn đề hiểu được điều gì sẽ xảy ra đối với những sao như vậy theo thuyết tương đối rộng thì phải tới năm 1939 mới được nhà khoa học trẻ người Mỹ là Robert Oppenheimer giải quyết lần đầu tiên. Tuy nhiên, kết quả của ông cho thấy rằng không có một hệ quả quan sát nào có thể phát hiện được bằng các kính thiên văn thời đó. Rồi chiến tranh thế giới thứ 2 xảy ra, và chính Oppenheimer lại cuốn hút vào dự án bom nguyên tử. Sau chiến tranh, vấn đề sự co lại do hấp dẫn bị lãng quên vì đa số các nhà khoa học bắt đầu lao vào các hiện tượng xảy ra trong quy mô nguyên tử và hạt nhân của nó. Tuy nhiên, vào những năm 60 sự quan tâm tới các vấn đề ở thang vĩ mô của thiên văn học và vũ trụ học lại sống dậy vì số lượng cũng như tầm quan sát thiên văn tăng lên rất lớn, do việc áp dụng những công nghệ hiện đại. Công trình của Oppenheimer khi đó lại được phát hiện lại và được mở rộng thêm bởi nhiều người khác.

Bức tranh mà hiện nay chúng ta có từ công trình của Oppenheimer như sau: trường hấp dẫn của ngôi sao làm thay đổi đường truyền của các tia sáng trong không-thời gian. Các nón ánh sáng - chỉ đường truyền trong không-thời gian của các chớp sáng được phát ra từ đỉnh của nón - sẽ hơi bị uốn vào phía trong, phía gần với bề mặt của sao. Điều này có thể thấy được theo quỹ đạo cong của tia sáng phát từ những ngôi sao xa trong quá trình nhật thực. Vì ngôi sao nặng đang co lại, nên trường hấp dẫn ở bề mặt của nó ngày càng mạnh và nón ánh sáng càng bị uốn cong vào phía trong. Điều này làm cho tia sáng ngày càng khó thoát khỏi ngôi sao, và ánh sáng sẽ ngày càng mờ đi và đỏ hơn đối với người quan sát từ xa. Cuối cùng, khi ngôi sao đã co tới một bán kính tới hạn nào đó, trường hấp dẫn ở bề mặt của nó trở nên mạnh tới mức nón ánh sáng bị uốn vào phía trong nhiều đến nỗi ánh sáng không thể thoát ra được nữa

(hình 6.1). Theo thuyết tương đối thì không có gì có thể chuyển động nhanh hơn ánh sáng. Vì vậy, nếu ánh sáng không thể thoát ra được, thì cũng không có gì có thể thoát được ra; tất cả đều bị trường hấp dẫn kéo lại. Do đó, ta có một tập các sự cố, tức là một vùng trong không-thời gian, mà không có gì có thể thoát ra từ đó để đến được với người quan sát từ xa. Vùng này chính là cái mà người ta gọi là lỗ đen. Biên của vùng này được gọi là chân trời sự cố, và nó trùng với đường truyền của các tia sáng vừa chớm không thoát ra được khỏi lỗ đen.

Để hiểu được điều mà bạn sẽ thấy nếu bạn đang quan sát sự co lại của một ngôi sao để tạo thành lỗ đen, thì cần nhớ rằng trong thuyết tương đối không có khái niệm thời gian tuyệt đối. Mỗi một người quan sát có độ đo thời gian riêng của mình. Thời gian đối với người ở trên một ngôi sao sẽ khác thời gian của người ở xa, do có trường hấp dẫn của các ngôi sao. Giả sử có một nhà du hành vũ trụ quả cảm ở ngay trên bề mặt một ngôi sao đang co lại vào phía trong của nó, cứ mỗi một giây theo đồng hồ của anh ta lại gửi về con tàu đang quay quanh ngôi sao đó một tín hiệu. Ở thời điểm nào đó theo đồng hồ của anh ta, ví dụ lúc 11 giờ, ngôi sao co lại dưới bán kính tới hạn - kích thước mà ở đó trường hấp dẫn bắt đầu mạnh tới mức không gì có thể thoát được ra, - và như vậy, các tín hiệu của nhà du hành không tới được con tàu nữa. Khi tới gần 11 giờ, các đồng nghiệp của nhà du hành quan sát từ con tàu thấy khoảng thời gian giữa hai tín hiệu liên tiếp do nhà du hành gửi về ngày càng dài hơn, nhưng trước 10 giờ 59 phút 59 giây hiệu ứng đó rất nhỏ. Họ chỉ phải đợi hơn một giây chút xíu giữa tín hiệu mà nhà du hành gửi về lúc 10 giờ 59 phút 58 giây và tín hiệu anh ta gửi về lúc đồng hồ anh ta chỉ 10 giờ 59 phút 59 giây, nhưng họ sẽ phải đợi vĩnh viễn viễn tín hiệu gửi lúc 11 giờ. Các sóng ánh sáng được phát từ bề mặt ngôi sao trong khoảng thời gian giữa 10 giờ 59 phút 59 giây và 11 giờ theo đồng hồ của nhà du hành sẽ được truyền qua một khoảng thời gian vô hạn, nếu đo từ con tàu. Khoảng thời gian giữa hai sóng ánh sáng liên tiếp tới con tàu mỗi lúc một dài hơn, do đó ánh sáng từ ngôi sao mỗi lúc một đỏ và nhợt nhạt hơn. Cuối cùng, ngôi sao sẽ mờ tối tới mức từ con tàu không thể nhìn thấy nó nữa; tất cả những cái còn lại chỉ là một lỗ đen trong không gian. Tuy nhiên, ngôi sao vẫn tiếp tục tác dụng một lực hấp dẫn như trước lên con tàu làm cho nó vẫn tiếp tục quay xung quanh lỗ đen.

Thực ra, kịch bản này không phải hoàn toàn là hiện thực vì vấn đề sau: Lực hấp dẫn càng yếu khi bạn càng ở xa ngôi sao, vì vậy lực hấp dẫn tác dụng lên chân nhà du hành vũ trụ quả cảm của chúng ta sẽ luôn luôn lớn hơn lực tác dụng lên đầu của anh ta. Sự khác biệt về lực đó sẽ kéo dài nhà du hành vũ trụ của chúng ta giống như một sợi mì hoặc xé đứt anh ta ra trước khi ngôi sao co tới bán kính tới hạn, tại đó chân trời sự cố được hình thành! Tuy nhiên, chúng ta tin rằng trong vũ trụ có những vật thể lớn hơn rất nhiều, chẳng hạn như những vùng trung tâm của các thiên hà, cũng có thể co lại do hấp dẫn để tạo thành các lỗ đen; một nhà du hành vũ trụ ở trên một trong các vật thể đó sẽ không bị xé đứt trước khi lỗ đen được tạo thành. Thực tế, anh ta sẽ chẳng cảm thấy gì đặc biệt khi đạt tới bán kính tới hạn, và có thể vượt điểm-không-đường-quay-lại mà không nhận thấy. Tuy nhiên, chỉ một ít giờ sau, khi vùng đó tiếp tục co lại, sự khác biệt về lực hấp dẫn tác dụng lên chân và đầu sẽ lại trở nên mạnh tới mức nó sẽ xé đứt người anh ta.

Công trình mà Roger Penrose và tôi tiến hành giữa năm 1965 và 1970 chứng tỏ, rằng theo thuyết tương đối rộng, thì cần phải có một kỳ dị với mật độ và độ cong không-thời gian vô hạn bên trong lỗ đen. Điều này khá giống với vụ nổ lớn ở điểm bắt đầu, chỉ có điều ở đây lại là thời điểm cuối của một vật thể cùng nhà du hành đang co lại. Ở kỳ dị này, các định luật khoa học và khả năng tiên đoán tương lai đều không dùng được nữa. Tuy nhiên, một người quan sát còn ở ngoài lỗ đen sẽ không bị ảnh hưởng bởi sự mất khả năng tiên đoán đó vì không một tín hiệu nào hoặc tia sáng nào từ điểm kỳ dị đó tới được anh ta. Sự kiện đáng chú ý đó đã dẫn Roger Penrose tới giả thuyết về sự kiểm duyệt vũ trụ - một giả thuyết có thể phát biểu dưới dạng “Chúa căm ghét sự kỳ dị trần trụi”. Nói một cách khác, những kỳ dị được tạo ra bởi sự co lại do hấp dẫn chỉ xảy ra ở những nơi giống như lỗ đen - nơi mà chúng được che giấu kín đáo bởi chân trời sự cố không cho người ngoài nhìn thấy. Nói một cách chặt chẽ thì đây là mới là giả thuyết về sự kiểm duyệt vũ trụ yếu: nó bảo vệ cho những người quan sát còn ở ngoài lỗ đen tránh được những hậu quả do sự mất khả năng tiên đoán xảy ra ở điểm kỳ dị, nhưng nó hoàn toàn không làm được gì cho nhà du hành bất hạnh đã bị rơi vào lỗ đen.

Có một số nghiệm của các phương trình của thuyết tương đối rộng, trong đó nó cho phép nhà du hành của chúng ta có thể nhìn thấy điểm kỳ dị trần trụi: như vậy anh ta có thể tránh không đụng vào nó và thay vì anh ta có thể rơi qua một cái “lỗ sâu đục” và đi ra một vùng khác của vũ trụ. Điều này tạo ra những khả năng to lớn cho việc du hành trong không gian và thời gian, nhưng thật không may, những nghiệm đó lại rất không ổn định; chỉ cần một nhiễu động nhỏ, ví dụ như sự có mặt của nhà du hành, là đã có thể làm cho chúng thay đổi tới mức nhà du hành không còn nhìn thấy kỳ dị nữa cho tới khi chạm vào nó và thời gian của anh ta sẽ chấm hết. Nói cách khác, kỳ dị luôn luôn nằm ở tương lai chứ không bao giờ nằm ở quá khứ của anh ta. Giả thuyết kiểm duyệt vũ trụ mạnh phát biểu rằng trong nghiệm hiện thực thì các kỳ dị luôn luôn hoặc hoàn toàn nằm trong tương lai (như các kỳ dị do quá trình co lại do hấp dẫn) hoặc hoàn toàn nằm trong quá khứ (như vụ nổ lớn). Người ta rất hy vọng một trong hai giả thuyết kiểm duyệt là đúng, bởi vì ở gần các kỳ dị trần trụi sẽ có thể chu du về quá khứ. Trong khi điều này thật tuyệt vời đối với các nhà viết truyện khoa học viễn tưởng thì nó cũng có nghĩa là cuộc sống của bất kỳ ai đều không an toàn: một kẻ nào đó có thể mò về quá khứ giết chết bố hoặc mẹ của bạn trước khi bạn được đầu thai!

Chân trời sự cố, biên của vùng không - thời gian mà từ đó không gì thoát ra được, có tác dụng như một màng một chiều bao quanh lỗ đen: các vật, tỷ như nhà du hành khinh suất của chúng ta, có thể rơi vào lỗ đen qua chân trời sự cố, nhưng không gì có thể thoát ra lỗ đen qua chân trời sự cố (cần nhớ rằng chân trời sự cố là đường đi trong không-thời gian của ánh sáng đang tìm cách thoát khỏi lỗ đen, và không gì có thể chuyển động nhanh hơn ánh sáng). Có thể dùng lời của thi sĩ Dante nói về lối vào địa ngục để nói về chân trời sự cố: “Hỡi những người bước vào đây hãy vứt bỏ mọi hy vọng!”. Bất kỳ cái gì hoặc bất kỳ ai, một khi đã rơi qua chân trời sự cố thì sẽ sớm tới vùng có mật độ vô hạn và, chấm hết thời gian.

Thuyết tương đối rộng tiên đoán rằng các vật nặng khi chuyển động sẽ phát ra sóng hấp dẫn - những nếp gợn trong độ cong của không gian truyền với vận tốc của ánh sáng. Những sóng này tương tự như các sóng ánh sáng, là những gợn sóng của trường điện từ, nhưng sóng hấp dẫn khó phát hiện hơn nhiều. Giống như ánh sáng, sóng hấp dẫn cũng mang năng lượng lấy từ các vật phát ra nó. Do đó, hệ thống các vật nặng cuối cùng sẽ an bài ở một trạng thái dừng nào đó bởi vì năng lượng ở bất cứ dạng vận động nào đều được các sóng hấp dẫn mang đi. (Điều này gần tương tự với việc ném một cái nút xuống nước. Ban đầu, nó dập dềnh khá mạnh, nhưng rồi vì các gợn sóng mang dần đi hết năng lượng của nó, cuối cùng nó an bài ở một trạng thái dừng). Ví dụ, chuyển động của trái đất xung quanh mặt trời tạo ra các sóng hấp dẫn. Tác dụng của việc mất năng lượng sẽ làm thay đổi quỹ đạo trái đất, làm cho nó dần dần tiến tới gần mặt trời hơn, rồi cuối cùng chạm mặt trời và an bài ở một trạng thái dừng. Tuy nhiên, tốc độ mất năng lượng của trái đất và mặt trời rất thấp: chỉ cỡ đủ để chạy một lò sưởi điện nhỏ. Điều này có nghĩa là phải mất gần một ngàn triệu triệu triệu triệu năm trái đất mới đâm vào mặt trời và vì vậy chúng ta chẳng có lý do gì để lo lắng cả! Sự thay đổi quỹ đạo của trái đất cũng rất chậm khiến cho khó có thể quan sát được, nhưng chính hiện tượng này đã được quan sát thấy ít năm trước trong hệ thống có tên là PSR 1913+16 PSR là tên viết tắt của một pulsar (pulsar là chuẩn tinh: một loại sao neutron đặc biệt có khả năng phát đều đặn các xung sóng radio). Hệ thống này gồm hai sao neutron quay xung quanh nhau và sự mất năng lượng do phát sóng hấp dẫn làm cho chúng chuyển động theo đường xoắn ốc hướng vào nhau

Trong quá trình co lại do hấp dẫn của một ngôi sao để tạo thành một lỗ đen, các chuyển động sẽ nhanh hơn nhiều và vì vậy tốc độ năng lượng được chuyển đi cũng cao hơn nhiều. Do vậy mà thời gian để đạt tới sự an bài ở một trạng thái dừng sẽ không quá lâu. Vậy cái giai đoạn cuối cùng này nhìn sẽ như thế nào? Người ta cho rằng, nó sẽ phụ thuộc vào tất cả các đặc tính của ngôi sao. Có nghĩa là, nó không chỉ phụ thuộc vào khối lượng và tốc độ quay, mà còn phụ thuộc vào những mật độ khác nhau của các phần tử khác nhau của ngôi sao và cả những chuyển động phức tạp của các khí trong ngôi sao đó nữa. Và nếu các lỗ đen cũng đa dạng như những đối tượng đã co lại và tạo nên chúng thì sẽ rất khó đưa ra một tiên đoán nào về các lỗ đen nói chung.

Tuy nhiên, vào năm 1967, một nhà khoa học Canada tên là Werner Israel (ông sinh ở Berlin, lớn lên ở Nam Phi, và làm luận án tiến sĩ ở Ireland) đã tạo ra một bước ngoặt trong việc nghiên cứu các lỗ đen. Israel chỉ ra rằng, theo thuyết tương đối rộng thì các lỗ đen không quay là rất đơn giản; chúng có dạng cầu lý tưởng và có kích thước chỉ phụ thuộc vào khối lượng của chúng; hai lỗ đen như thế có khối lượng như nhau là hoàn toàn đồng nhất với nhau.

Thực tế, những lỗ đen này có thể được mô tả bằng một nghiệm riêng của phương trình Einstein đã được biết từ năm 1917, do Karl Schwarzchild tìm ra gần như ngay sau khi tuyết tương đối rộng được phát minh. Thoạt đầu, nhiều người, thậm chí ngay cả Israel, lý luận rằng, vì các lỗ đen cần phải có dạng cầu lý tưởng nên chúng chỉ có thể được tạo thành từ sự co lại của đối tượng có dạng cầu lý tưởng. Mà một ngôi sao chẳng bao giờ có thể có dạng cầu lý tưởng được, nên nó chỉ có thể co lại để tạo thành một kỳ dị trần trụi mà thôi.

Tuy nhiên, có một cách giải thích khác cho kết quả của Israel mà Roger Penrose và đặc biệt là John Wheeler rất ủng hộ. Họ lý luận rằng, những chuyển động nhanh trong quá trình co lại có nghĩa là các sóng hấp dẫn do nó phát ra sẽ làm cho nó có dạng cầu hơn và vào thời điểm an bài ở trạng thái dừng nó có dạng chính xác là cầu. Theo quan điểm này thì một ngôi sao không quay, bất kể hình dạng và cấu trúc bên trong phức tạp của nó, sau khi kết thúc quá trình co lại do hấp dẫn đều là một lỗ đen có dạng cầu lý tưởng với kích thước chỉ phụ thuộc vào khối lượng của nó. Những tính toán sau này đều củng cố cho quan điểm này và chẳng bao lâu sau nó đã được mọi người chấp nhận.

Kết quả của Israel chỉ đề cập trường hợp các lỗ đen được tạo thành từ các vật thể không quay. Năm 1963 Roy Kerr người New Zealand đã tìm ra một tập hợp nghiệm của các phương trình của thuyết tương đối mô tả các lỗ đen quay. Các lỗ đen “Kerr” đó quay với vận tốc không đổi, có kích thước và hình dáng chỉ phụ thuộc vào khối lượng và tốc độ quay của chúng. Nếu tốc độ quay bằng không, lỗ đen sẽ là cầu lý tưởng và nghiệm này sẽ trùng với nghiệm Schwarzchild. Nếu tốc độ quay khác 0, lỗ đen sẽ phình ra phía ngoài ở gần xích đạo của nó (cũng như trái đất và mặt trời đều phình ra do sự quay của chúng), và nếu nó quay càng nhanh thì sự phình ra sẽ càng mạnh. Như vậy, để mở rộng kết quả của Israel cho bao hàm được cả các vật thể quay, người ta suy đoán rằng một vật thể quay co lại để tạo thành một lỗ đen cuối cùng sẽ an bài ở trạng thái dừng được mô tả bởi nghiệm Kerr.

Năm 1970, một đồng nghiệp và cũng là nghiên cứu sinh của tôi, Brandon Carter đã đi được bước đầu tiên hướng tới chứng minh suy đoán trên. Anh đã chứng tỏ được rằng với điều kiện lỗ đen quay dừng có một trục đối xứng, giống như một con quay, thì nó sẽ có kích thước và hình dạng chỉ phụ thuộc vào khối lượng và tốc độ quay của nó. Sau đó vào năm 1971, tôi đã chứng minh được rằng bất kỳ một lỗ đen quay dừng nào đều cần phải có một trục đối xứng như vậy. Cuối cùng, vào năm 1973, David Robinson ở trường Kings College, London đã dùng kết quả của Carter và tôi chứng minh được rằng ước đoán nói trên là đúng. Những lỗ đen như vậy thực sự là nghiệm Kerr. Như vậy, sau khi co lại do hấp dẫn, lỗ đen sẽ an bài trong trạng thái có thể quay nhưng không xung động. Hơn nữa, kích thước hình dạng của nó chỉ phụ thuộc vào khối lượng và tốc độ quay chứ không phụ thuộc vào bản chất của vật thể bị co lại tạo nên nó. Kết quả này được biết dưới châm ngôn: “lỗ đen không có tóc”. Định lý “không có tóc” này có một tầm quan trọng thực tiễn to lớn bởi nó hạn chế rất mạnh các loại lỗ đen lý thuyết. Do vậy, người ta có thể tạo ra những mô hình chi tiết của các vật có khả năng chứa lỗ đen và so sánh những tiên đoán của mô hình với quan sát. Điều này cũng có nghĩa là một lượng rất lớn thông tin về vật thể co lại sẽ phải mất đi khi lỗ đen được tạo thành, bởi vì sau đấy tất cả những thứ mà ta có thể đo được về vật thể đó chỉ là khối lượng và tốc độ quay của nó. Ý nghĩa của điều này sẽ được thấy rõ ở chương sau.

Các lỗ đen chỉ là một trong số rất ít các trường hợp trong lịch sử khoa học, trong đó lý thuyết đã được phát triển rất chi tiết như một mô hình toán học trước khi có những bằng chứng từ quan sát xác nhận nó là đúng đắn.

Thực tế, điều này đã được dùng như một luận cứ chủ yếu của những người phản đối lỗ đen: làm sao người ta có thể tin rằng có những vật thể mà bằng chứng về sự tồn tại của nó chỉ là những tính toán dựa trên lý thuyết tương đối rộng, một lý thuyết vốn đã đáng ngờ? Tuy nhiên, vào năm 1963, Maarten Schmidt, một nhà thiên văn làm việc ở Đài thiên văn Palomar, Caliornia, Mỹ, đã đo được sự chuyển dịch về phía đỏ của một đối tượng mờ tựa như sao theo hướng một nguồn phát sóng radio có tên là 3C273 (tức là số của nguồn là 273 trong catalogue thứ 3 ở Cambridge). Ông thấy sự chuyển dịch này là quá lớn, nếu xem nó do trường hấp dẫn gây ra: nếu đó là sự chuyển dịch về phía đỏ do trường hấp dẫn gây ra thì đối tượng đó phải rất nặng và ở gần chúng ta tới mức nó sẽ làm nhiễu động quỹ đạo của các hành tinh trong Hệ mặt trời. Điều này gợi ý rằng sự chuyển dịch về phía đỏ này là do sự giãn nở của vũ trụ và vì vậy đối tượng đó phải ở rất xa chúng ta. Để thấy được ở một khoảng cách xa như thế vật thể đó phải rất sáng hay nói cách khác là phải phát ra một năng lượng cực lớn. Cơ chế duy nhất mà con người có thể nghĩ ra để miêu tả một năng lượng lớn như thế, là sự co lại do hấp dẫn không phải chỉ của một ngôi sao mà của cả vùng trung tâm của thiên hà. Nhiều đối tượng “tương tự sao” (chuẩn tinh), hay nói cách khác là các quasar, cũng đã được phát hiện. Tất cả đều có chuyển dịch lớn về phía đỏ. Nhưng tất cả chúng đều ở quá xa, khó quan sát để cho một bằng chứng quyết định về các lỗ đen.

Sự cổ vũ tiếp theo cho sự tồn tại của các lỗ đen là phát minh của Jocelyn Bell, một nghiên cứu sinh ở Cambridge, về những thiên thể phát các xung radio đều đặn. Thoạt đầu, Bell và người hướng dẫn của chị là Antony Hewish, nghĩ rằng có lẽ họ đã liên lạc được với một nền văn minh lạ trong thiên hà! Thực tế, trong buổi seminar khi họ thông báo phát minh của họ, tôi nhớ là họ đã gọi bốn nguồn phát sóng radio đầu tiên đó là LGM 1-4 với LGM là viết tắt của “Little Green Men” (những người xanh nhỏ). Tuy nhiên, cuối cùng họ và mọi người đều đi đến một kết luận ít lãng mạn hơn cho rằng những đối tượng đó - có tên là pulsar - thực tế là những sao neutron quay, có khả năng phát các xung sóng radio, do sự tương tác phức tạp giữa các từ trường của nó với vật chất xung quanh. Đây là một tin không mấy vui vẻ đối với các nhà văn chuyên viết về các chuyện phiêu lưu trong vũ trụ, nhưng lại đầy hy vọng đối với một số ít người tin vào sự tồn tại của lỗ đen thời đó: đây là bằng chứng xác thực đầu tiên về sự tồn tại của các sao neutron. Sao neutron có bán kính chừng mười dặm, chỉ lớn hơn bán kính tới hạn để ngôi sao trở thành một lỗ đen ít lần. Nếu một sao có thể co lại tới một kích thước nhỏ như vậy thì cũng không có lý do gì mà những ngôi sao khác không thể co lại tới một kích thước còn nhỏ hơn nữa để trở thành lỗ đen.

Làm sao chúng ta có thể hy vọng phát hiện được lỗ đen, khi mà theo chính định nghĩa của nó, nó không phát ra một tia sáng nào? Điều này cũng na ná như đi tìm con mèo đen trong một kho than. May thay vẫn có một cách. Như John Michell đã chỉ ra trong bài báo tiên phong của ông viết năm 1983, lỗ đen vẫn tiếp tục tác dụng lực hấp dẫn lên các vật xung quanh. Các nhà thiên văn đã quan sát được nhiều hệ thống, trong đó có hai sao quay xung quanh nhau và hút nhau bằng lực hấp dẫn. Họ cũng quan sát được những hệ thống, trong đó chỉ có một sao thấy được quay xung quanh sao đồng hành (không thấy được). Tất nhiên, người ta không thể kết luận ngay rằng sao đồng hành đó là một lỗ đen, vì nó có thể đơn giản chỉ là một ngôi sao phát sáng quá yếu nên ta không thấy được. Tuy nhiên, có một số trong các hệ thống đó, chẳng hạn như hệ thống có tên là Cygnus X-1

(hình 6.2) cũng là những nguồn phát tia X rất mạnh. Cách giải thích tốt nhất cho hiện tượng này là vật chất bị bắn ra khỏi bề mặt của ngôi sao nhìn thấy. Vì lượng vật chất này rơi về phía đồng hành không nhìn thấy, nên nó phát triển thành chuyển động theo đường xoắn ốc (khá giống như nước chảy ra khỏi bồn tắm) và trở nên rất nóng, phát ra tia X (hình 6.3). Muốn cho cơ chế này hoạt động, sao đồng hành không nhìn thấy phải rất nhỏ, giống như sao lùn trắng, sao neutron hoặc lỗ đen. Từ quỹ đạo quan sát được của ngôi sao nhìn thấy, người ta có thể xác định được khối lượng khả dĩ thấp nhất của ngôi sao đồng hành không nhìn thấy. Trong trường hợp hệ thống Cygnus X-1 sao đó có khối lượng lớn gấp 6 lần mặt trời. Theo kết quả của Chandrasekhar thì như thế là quá lớn để cho sao không nhìn thấy là một sao lùn trắng. Nó cũng có khối lượng quá lớn để là sao neutron. Vì vậy, nó dường như phải là một lỗ đen...

Cũng có những mô hình khác giải thích rằng Cygnus X-1 không bao gồm lỗ đen, nhưng tất cả những mô hình đó đều rất gượng gạo. Lỗ đen là cách giải thích thực sự tự nhiên duy nhất những quan trắc đó. Mặc dù vậy, tôi đã đánh cuộc với Kip Thorne ở Viện kỹ thuật California, rằng thực tế Cygnus X-1 không chứa lỗ đen! Đây chẳng qua chỉ là sách lược bảo hiểm cho tôi. Tôi đã tốn biết bao công sức cho những lỗ đen và tất cả sẽ trở nên vô ích, nếu hóa ra là các lỗ đen không tồn tại. Nhưng khi đó tôi sẽ được an ủi là mình thắng cuộc và điều đó sẽ mang lại cho tôi bốn năm liền tạp chí Private Eye. Nếu lỗ đen tồn tại thì Kip được 1 năm tạp chí Penthouse. Khi chúng tôi đánh cuộc vào năm 1975 thì chúng tôi đã chắc tới 80% rằng Cygnus là lỗ đen. Và bây giờ tôi có thể nói rằng chúng tôi đã biết chắc tới 95%, nhưng cuộc đánh cuộc vẫn chưa thể xem là đã ngã ngũ.

Giờ đây chúng ta cũng có bằng chứng về một số lỗ đen khác trong các hệ thống giống như Cygnus X-1 trong thiên hà của chúng ta và trong hai thiên hà lân cận có tên là Magellanic Clouds. Tuy nhiên, số các lỗ đen chắc còn cao hơn nhiều; trong lịch sử dài dằng dặc của vũ trụ nhiều ngôi sao chắc đã đốt hết toàn bộ nhiên liệu hạt nhân của mình và đã phải co lại. Số các lỗ đen có thể lớn hơn nhiều so với số những ngôi sao nhìn thấy, mà chỉ riêng trong thiên hà của chúng ta thôi số những ngôi sao đó đã tới khoảng một trăm ngàn triệu. Lực hút hấp dẫn phụ thêm của một số lớn như thế các lỗ đen có thể giải thích được tại sao thiên hà của chúng ta lại quay với tốc độ như nó hiện có: khối lượng của các sao thấy được không đủ để làm điều đó. Chúng ta cũng có một số bằng chứng cho thấy rằng có một lỗ đen lớn hơn nhiều ở trung tâm thiên hà của chúng ta với khối lượng lớn hơn khối lượng của mặt trời tới trăm ngàn lần. Các ngôi sao trong thiên hà tới gần lỗ đen đó sẽ bị xé tan do sự khác biệt về hấp dẫn ở phía gần và phía xa của nó. Tàn tích của những ngôi sao đó và khí do các sao khác tung ra đều sẽ rơi về phía lỗ đen. Cũng như trong trường hợp Cygnus X-1, khí sẽ chuyển động theo đường xoắn ốc đi vào và nóng lên mặc dù không nhiều như trong trường hợp đó. Nó sẽ không đủ nóng để phát ra các tia X, nhưng cũng có thể là các nguồn sóng radio và tia hồng ngoại rất đậm đặc mà người ta đã quan sát được ở tâm thiên hà.

Người ta cho rằng những lỗ đen tương tự hoặc thậm chí còn lớn hơn, với khối lượng khoảng trăm triệu lần lớn hơn khối lượng mặt trời có thể gặp ở tâm các quasar. Vật chất rơi vào những lỗ đen siêu nặng như vậy sẽ tạo ra một nguồn năng lượng duy nhất đủ lớn để giải thích lượng năng lượng cực lớn mà các vật thể đó phát ra. Vì vật chất chuyển động xoáy ốc vào lỗ đen, nó sẽ làm cho lỗ đen quay cùng chiều tạo cho nó một từ trường khá giống với từ trường của trái đất. Các hạt có năng lượng rất cao cũng sẽ được sinh ra gần lỗ đen bởi vật chất rơi vào. Từ trường này có thể mạnh tới mức hội tụ được các hạt đó thành những tia phóng ra ngoài dọc theo trục quay của lỗ đen, tức là theo hướng các cực bắc và nam của nó. Các tia như vậy thực tế đã được quan sát thấy trong nhiều thiên hà và các quasar.

Người ta cũng có thể xét tới khả năng có những lỗ đen với khối lượng nhỏ hơn nhiều so với khối lượng mặt trời. Những lỗ đen như thế không thể được tạo thành bởi sự co lại do hấp dẫn, vì khối lượng của chúng thấp hơn giới hạn Chandrasekhar: Các sao có khối lượng thấp đó tự nó có thể chống chọi được với lực hấp dẫn thậm chí cả khi chúng đã hết sạch nhiên liệu hạt nhân. Do vậy, những lỗ đen khối lượng thấp đó chỉ có thể được tạo thành nếu vật chất của nó được nén đến mật độ cực lớn bởi một áp lực rất cao từ bên ngoài. Điều kiện như thế có thể xảy ra trong một quả bom khinh khí rất lớn: nhà vật lý John Wheeler một lần đã tính ra rằng nếu ta lấy toàn bộ nước nặng trong tất cả các đại dương thì ta có thể chế tạo được quả bom khinh khí có thể nén được vật chất ở tâm mạnh tới mức có thể tạo nên một lỗ đen. (Tất nhiên sẽ chẳng còn ai sống sót mà quan sát điều đó!). Một khả năng khác thực tiễn hơn là các lỗ đen có khối lượng thấp có thể được tạo thành dưới nhiệt độ và áp suất cao ở giai đoạn rất sớm của vũ trụ. Mặt khác những lỗ đen chỉ có thể tạo thành nếu vũ trụ ở giai đoạn rất sớm không trơn tru và đều đặn một cách lý tưởng, bởi vì chỉ cần một vùng nhỏ có mật độ lớn hơn mật độ trung bình là có thể bị nén theo cách đó để tạo thành lỗ đen. Nhưng chúng ta biết rằng nhất thiết phải có một số bất thường như vậy, bởi vì nếu không vật chất trong vũ trụ cho tới nay vẫn sẽ còn phân bố đều một cách lý tưởng thay vì kết lại thành khối trong các ngôi sao và thiên hà.

Những bất thường đòi hỏi phải có để tạo ra các ngôi sao và thiên hà có dẫn tới sự tạo thành một số đáng kể “lỗ đen nguyên thủy” hay không còn phụ thuộc vào chi tiết của những điều kiện ở giai đoạn đầu của vũ trụ. Vì vậy, nếu hiện nay chúng ta có thể xác định được có bao nhiêu lỗ đen nguyên thủy thì chúng ta sẽ biết được nhiều điều về những giai đoạn rất sớm của vũ trụ. Các lỗ đen nguyên thủy với khối lượng lớn hơn ngàn triệu tấn (bằng khối lượng của một quả núi lớn) có thể được phát hiện chỉ thông qua ảnh hưởng hấp dẫn của chúng lên các vật thể khác là vật chất thấy được hoặc ảnh hưởng tới sự giãn nở của vũ trụ. Tuy nhiên, như chúng ta sẽ biết ở chương sau, các lỗ đen xét cho cùng cũng không phải quá đen: chúng phát sáng như những vật nóng, và các lỗ đen càng nhỏ thì chúng phát sáng càng mạnh. Và như vậy một điều thật nghịch lý là các lỗ đen càng nhỏ thì càng dễ phát hiện hơn các lỗ đen lớn.
Tài sản của mr_robin

Trả Lời Với Trích Dẫn
  #8  
Old 24-08-2008, 09:17 AM
mr_robin's Avatar
mr_robin mr_robin is offline
Cái Thế Ma Nhân
 
Tham gia: May 2008
Đến từ: SG
Bài gởi: 37
Thời gian online: 7 giờ 22 phút 5 giây
Xu: 0
Thanks: 1
Thanked 0 Times in 0 Posts
Chương 7: Lỗ đen không quá đen
Trước năm 1970, nghiên cứu của tôi về thuyết tương đối rộng chủ yếu tập trung vào vấn đề có tồn tại hay không kỳ dị vụ nổ lớn. Tuy nhiên, vào một buổi tối tháng 11 năm đó, ngay sau khi con gái tôi, cháu Lucy, ra đời, tôi bắt đầu suy nghĩ về những lỗ đen khi tôi trên đường về phòng ngủ. Vì sự tàn tật của mình, tôi di chuyển rất chậm, nên có đủ thời gian để suy nghĩ. Vào thời đó còn chưa có một định nghĩa chính xác cho biết những điểm nào của không-thời gian là nằm trong, và những điểm nào là nằm ngoài lỗ đen. Tôi đã thảo luận với Roger Penrose ý tưởng định nghĩa lỗ đen như một tập hợp mà các sự cố không thể thoát ra khỏi nó để đến những khoảng cách lớn, và bây giờ nó đã trở thành một định nghĩa được mọi người chấp nhận. Điều này có nghĩa là biên giới của lỗ đen, cũng gọi là chân trời sự cố, được tạo bởi đường đi trong không-thời gian của các tia sáng vừa chớm không thoát ra được khỏi lỗ đen, và vĩnh viễn chơi vơi ở mép của nó (hình 7.1). Nó cũng gần giống như trò chơi chạy trốn cảnh sát, chỉ hơi vượt trước được một bước nhưng còn chưa thể bứt ra được.

Bất chợt tôi nhận ra rằng đường đi của các tia sáng ấy không bao giờ có thể tiến tới gần nhau. Vì nếu không thế, cuối cùng chúng cũng sẽ phải chập vào nhau. Điều này cũng giống như đón gặp một người bạn đang phải chạy trốn cảnh sát ở phía ngược lại - rốt cuộc cả hai sẽ đều bị bắt! (Hay trong trường hợp của chúng ta cả hai tia sáng sẽ đều bị rơi vào lỗ đen). Nhưng nếu cả hai tia sáng đó đều bị nuốt bởi lỗ đen, thì chúng không thể ở biên giới của lỗ đen được. Như vậy đường đi của các tia sáng trong chân trời sự cố phải luôn luôn song song hoặc đi ra xa nhau. Một cách khác để thấy điều này là chân trời sự cố - biên giới của lỗ đen - giống như mép của một cái bóng - bóng của số phận treo lơ lửng. Nếu bạn nhìn cái bóng tạo bởi một nguồn sáng ở rất xa, chẳng hạn như mặt trời, bạn sẽ thấy rằng các tia sáng ở mép của nó không hề tiến tới gần nhau.

Nếu các tia sáng tạo nên chân trời sự cố - biên giới của lỗ đen - không bao giờ có thể tiến tới gần nhau, thì diện tích của chân trời sự cố có thể giữ nguyên không đổi hoặc tăng theo thời gian chứ không bao giờ giảm, vì nếu không, ít nhất sẽ có một số tia sáng trên biên phải tiến gần tới nhau. Thực tế thì diện tích sẽ tăng bất cứ khi nào có vật chất hoặc bức xạ rơi vào lỗ đen (hình7.2). Hoặc nếu có hai lỗ đen va chạm rồi xâm nhập vào nhau tạo thành một lỗ đen duy nhất, thì diện tích chân trời sự cố của lỗ đen tạo thành sẽ lớn hơn hoặc bằng tổng diện tích chân rời sự cố của hai lỗ đen riêng lẻ ban đầu (hình 7.3). Tính không giảm đó của diện tích chân trời sự cố đã đặt một hạn chế quan trọng đối với hành vi khả dĩ của các lỗ đen. Tôi đã xúc động về phát minh của mình tới mức đêm đó tôi không sao chợp mắt được. Ngay hôm sau tôi gọi điện cho Roger Penrose. Ông đã đồng ý với tôi. Thực tế, tôi nghĩ rằng chính ông cũng đã ý thức được tính chất đó của diện tích chân trời sự cố. Tuy nhiên, ông đã dùng một định nghĩa hơi khác của lỗ đen. Ông không thấy được rằng biên giới của các lỗ đen theo hai định nghĩa đó thực chất là như nhau, và do đó, diện tích của chúng cũng như nhau với điều kiện lỗ đen đã an bài ở trạng thái không thay đổi theo thời gian.

Tính chất không giảm của diện tích lỗ đen rất giống với tính chất của một đại lượng vật lý có tên là entropy - đại lượng là thước đo mức độ mất trật tự của một hệ thống. Kinh nghiệm hàng ngày cũng cho chúng ta biết rằng nếu để các vật tự do thì mức độ mất trật tự sẽ có xu hướng tăng. (Chỉ cần ngừng sửa chữa xung quanh là bạn sẽ thấy điều đó ngay!). Người ta có thể tạo ra trật tự từ sự mất trật tự (ví dụ như bạn có thể quét sơn lại nhà), nhưng điều đó yêu cầu phải tốn sức lực hoặc năng lượng, và như vậy có nghĩa là sẽ làm giảm lượng năng lượng của trật tự sẵn có.

Phát biểu chính xác ý tưởng này chính là Định luật II của nhiệt động học. Định luật đó phát biểu rằng: entropy của một hệ cô lập luôn luôn tăng, và rằng khi hai hệ hợp lại với nhau làm một thì entropy của hệ hợp thành sẽ lớn hơn tổng entropy của hai hệ riêng rẽ. Ví dụ, xét một hệ phân tử khí đựng trong một cái hộp. Có thể xem những phân tử như những quả cầu billard nhỏ, liên tục va chạm với nhau và với thành hộp. Nhiệt độ của khí càng cao thì các phân tử chuyển động càng nhanh, và chúng va chạm càng thường xuyên và càng mạnh với thành hộp, và áp suất chúng đè lên thành hộp càng lớn. Giả sử rằng ban đầu tất cả các phân tử bị giam ở nửa trái của hộp bằng một vách ngăn. Nếu bỏ vách ngăn đi, các phân tử sẽ có xu hướng tràn ra chiếm cả hai nửa của hộp. Ở một thời điểm nào đó sau đấy, do may rủi, có thể tất cả các phân tử sẽ dồn cả sang nửa phải hoặc trở lại nửa trái của hộp, nhưng khả năng chắc chắn hơn rất nhiều là chúng có số lượng gần bằng nhau ở cả hai nửa hộp. Một trạng thái kém trật tự hơn, hay nói cách khác là mất trật tự hơn, trạng thái ban đầu mà trong đó mọi phân tử chỉ ở trong một nửa hộp. Do đó, người ta nói rằng entropy của khí đã tăng lên. Tương tự, giả sử rằng ta bắt đầu với hai hộp, một hộp chứa các phân tử ôxy và một hộp chứa các phân tử nitơ. Nếu người ta ghép hai hộp với nhau và bỏ vách ngăn đi thì các phân tử ôxy và nitơ sẽ bắt đầu trộn lẫn vào nhau. Ở một thời điểm nào đó sau đấy, trạng thái có xác suất lớn nhất sẽ là sự trộn khá đều các phân tử ôxy và nitơ trong cả hai hộp. Trạng thái đó là kém trật tự hơn trạng thái ban đầu của hai hộp riêng rẽ.

Định luật thứ hai của nhiệt dộng học có vị trí hơi khác so với các định luật khoa học khác, chẳng hạn như định luật hấp dẫn của Newton, bởi vì nó không phải luôn luôn đúng, mà chỉ đúng trong đại đa số các trường hợp mà thôi. Xác suất để tất cả các phân tử trong hộp đầu tiên của chúng ta dồn cả về một nửa của hộp ở thời điểm sau khi bỏ vách ngăn chỉ bằng một phần nhiều triệu triệu, nhưng nó vẫn có thể xảy ra. Tuy nhiên, nếu có một lỗ đen ở cạnh thì định luật đó dường như sẽ bị vi phạm khá dễ dàng: chỉ cần ném một số vật chất có lượng entropy lớn, như một hộp khí chẳng hạn, vào lỗ đen. Khi đó tổng số entropy của vật chất ở ngoài lỗ đen sẽ giảm. Tất nhiên, người ta vẫn còn có thể viện lý rằng entropy tổng cộng, kể cả entropy trong lỗ đen sẽ không giảm, nhưng vì không có cách gì để nhìn vào lỗ đen, nên chúng ta không thể thấy được vật chất trong đó chứa bao nhiêu entropy. Khi này sẽ thật là tuyệt vời nếu có một đặc tính nào đó của lỗ đen, mà qua nó, người quan sát ở bên ngoài có thể biết về entropy của lỗ đen, và đặc tính này lại tăng bất cứ khi nào có một lượng vật chất mang entropy rơi vào lỗ đen. Sự phát hiện vừa mô tả ở trên cho thấy rằng diện tích của chân trời sự cố sẽ tăng bất cứ khi nào có một lượng vật chất rơi vào lỗ đen. Một nghiên cứu sinh ở Princeton tên là Jacod Bekenstein đã đưa ra giả thuyết rằng diện tích của chân trời sự cố chính là thước đo entropy của lỗ đen. Khi vật chất mang entropy rơi vào lỗ đen, diện tích của chân trời sự cố tăng, nên tổng entropy của vật chất ngoài lỗ đen và diện tích chân trời sự cố sẽ không khi nào giảm.

Giả thuyết này dường như đã tránh cho định luật thứ hai nhiệt động học không bị vi phạm trong hầu hết mọi tình huống. Tuy nhiên, vẫn còn một khe hở tai hại. Nếu lỗ đen có entropy thì nó cũng sẽ phải có nhiệt độ. Nhưng một vật có nhiệt độ thì sẽ phải phát xạ với tốc độ nào đó. Kinh nghiệm hàng ngày cũng cho thấy rằng nếu người ta nung nóng một que cời trong lửa thì nó sẽ nóng đỏ và bức xạ, nhưng những vật ở nhiệt độ thấp cũng bức xạ, chỉ có điều lượng bức xạ khá nhỏ nên người ta thường không nhìn thấy mà thôi. Bức xạ này đòi hỏi phải có để tránh cho định luật thứ hai khỏi bị vi phạm. Như vậy, các lỗ đen cũng cần phải bức xạ. Nhưng theo chính định nghĩa của nó thì lỗ đen là vật được xem là không phát ra gì hết. Và do đó, dường như diện tích của chân trời sự cố không thể xem như entropy của lỗ đen. Năm 1972 cùng với Bradon Carte và một đồng nghiệp Mỹ Jim Bardeen, tôi đã viết một bài báo trong đó chỉ ra rằng mặc dù có nhiều điểm tương tự giữa diện tích của chân trời sự cố và entropy nhưng vẫn còn khó khăn đầy tai hại đó. Tôi cũng phải thú nhận rằng khi viết bài báo đó tôi đã bị thúc đẩy một phần bởi sự bực tức đối với Bekenstein, người mà tôi cảm thấy đã lạm dụng phát hiện của tôi về diện tích của chân trời sự cố. Tuy nhiên, cuối cùng hóa ra anh ta về căn bản lại là đúng, mặc dù ở một mức độ mà chính anh ta cũng không ngờ.

Tháng 9 năm 1973, trong thời gian đến thăm Matxcơva, tôi đã thảo luận về các lỗ đen với hai chuyên gia hàng đầu của Liên Xô là Yakov Zedovich và Alexander Starobinsky. Họ khẳng định với tôi rằng theo nguyên lý bất động của cơ học lượng tử thì các lỗ đen quay cần phải sinh và phát ra các hạt. Tôi tin cơ sở vật lý trong lý lẽ của họ, nhưng tôi không thích phương pháp toán học mà họ sử dụng để tính toán sự phát xạ hạt. Do đó, tôi đã bắt tay vào tìm tòi một cách xử lý toán học tốt hơn mà tôi đã trình bày tại seminar thông báo ở Oxford vào cuối tháng 11 năm 1973. Vào thời gian đó, tôi còn chưa tiến hành tính toán để tìm ra sự phát xạ là bao nhiêu. Tôi chờ đợi người ta sẽ phát hiện được chính bức xạ từ các lỗ đen quay mà Zedovich và Starobinsky đã tiên đoán. Tuy nhiên, khi tính song tôi vô cùng ngạc nhiên và băn khoăn thấy rằng thậm chí cả các lỗ đen không quay dường như cũng sinh và phát ra các hạt với tốc độ đều. Thoạt tiên, tôi nghĩ rằng đó là dấu hiệu cho biết một trong những phép gần đúng mà tôi sử dụng là không thỏa đáng. Tôi ngại rằng nếu Bekenstein phát hiện ra điều đó, anh ta sẽ dùng nó như một lý lẽ nữa để củng cố ý tưởng của anh ta về entropy của các lỗ đen, điều mà tôi vẫn còn không thích. Tuy nhiên, càng suy nghĩ tôi càng thấy những phép gần đúng đó thực sự là đúng đắn. Nhưng điều đã thuyết phục hẳn được tôi rằng sự phát xạ là có thực là: phổ của các hạt bức xạ giống hệt như phổ phát xạ của vật nóng, và các lỗ đen phát ra các hạt với tốc độ chính xác để không vi phạm định luật thứ hai. Sau đó, những tính toán đã được lặp đi lặp lại dưới nhiều dạng khác nhau và bởi những người khác. Tất cả họ đều khẳng định rằng lỗ đen cần phải phát ra các hạt và bức xạ hệt như nó là một vật nóng với nhiệt độ chỉ phụ thuộc vào khối lượng của nó: khối lượng càng lớn thì nhiệt độ càng thấp.

Nhưng làm sao các lỗ đen lại có thể phát ra các hạt trong khi chúng ta biết được rằng không có vật gì từ phía trong có thể thoát ra khỏi chân trời sự cố? Câu trả lời mà cơ học lượng tử nói với chúng ta là: các hạt không phát ra từ bên trong lỗ đen mà là từ không gian “trống rỗng” ở ngay bên ngoài chân trời sự cố của lỗ đen! Chúng ta có thể hiểu điều này như sau: cái mà chúng ta quen nghĩ là không gian “trống rỗng” lại không thể hoàn toàn là trống rỗng, bởi vì điều đó có nghĩa là tất cả các trường như trường hấp dẫn và trường điện từ sẽ cần phải chính xác bằng 0. Tuy nhiên, giá trị của trường và tốc độ thay đổi của nó theo thời gian cũng giống như vị trí và vận tốc của hạt: nguyên lý bất định buộc rằng nếu người ta biết một trong hai đại lượng đó càng chính xác thì có thể biết về đại lượng kia càng kém chính xác! Vì vậy trong không gian trống rỗng, trường không cố định ở giá trị chính xác bằng 0, bởi vì nếu trái lại thì trường sẽ có cả giá trị chính xác (bằng 0) và tốc độ thay đổi cũng trị chính xác (bằng 0). Cần phải có một lượng bất định tối thiểu nào đó, hay người ta nói rằng, có những thăng giáng lượng tử trong giá trị của trường. Người ta có thể xem những thăng giáng đó như một cặp hạt ánh sáng hoặc hấp dẫn cùng xuất hiện ở một thời điểm nào đó, đi ra xa nhau rồi lại gặp lại và hủy nhau. Những hạt này là những hạt ảo giống như các hạt mang lực hấp dẫn của mặt trời: không giống các hạt thực, chúng không thể quan sát được một cách trực tiếp bằng máy dò hạt. Tuy nhiên, những hiệu ứng gián tiếp của chúng, chẳng hạn những thay đổi nhỏ về năng lượng của các quỹ đạo electron trong nguyên tử, đều có thể đo được và phù hợp với những tính toán lý thuyết với một mức độ chính xác rất cao. Nguyên lý bất định cũng tiên đoán rằng, có cả những cặp hạt vật chất như electron hoặc quark là ảo. Tuy nhiên, trong trường hợp này một thành viên của cặp là hạt, còn thành viên kia là phản hạt (các phản hạt của ánh sáng và hấp dẫn giống hệt như hạt).

Vì năng lượng không thể sinh ra từ hư vô, nên một trong các thành viên của cặp hạt/phản hạt sẽ có năng lượng dương và thành viên kia sẽ có năng lượng âm. Thành viên có năng lượng âm buộc phải là hạt ảo có thời gian sống ngắn, vì các hạt thực luôn luôn có năng lượng dương trong các tình huống thông thường. Do đó hạt ảo này phải đi tìm thành viên cùng cặp để hủy cùng với nó. Tuy nhiên, một hạt thực ở gần một vật nặng sẽ có năng lượng nhỏ hơn so với khi nó ở xa, bởi vì khi đưa nó ra xa cần phải tốn năng lượng để chống lại lực hút hấp dẫn của vật đó. Thường thường, năng lượng của hạt vẫn còn là dương, nhưng trường hợp hấp dẫn trong lỗ đen mạnh tới mức thậm chí một hạt thực ở đó cũng có năng lượng âm. Do đó, khi có mặt lỗ đen, hạt ảo với năng lượng âm khi rơi vào lỗ đen cũng có thể trở thành hạt thực hoặc phản hạt thực. Trong trường hợp đó, nó không còn cần phải hủy với bạn cùng cặp của nó nữa. Người bạn bị bỏ rơi này cũng có thể rơi vào lỗ đen, hoặc khi có năng lượng dương, nó cũng có thể thoát ra ngoài vùng lân cận của lỗ đen như một hạt thực hoặc phản hạt thực (hình 7.4). Đối với người quan sát ở xa thì dường như nó được phát ra từ lỗ đen. Lỗ đen càng nhỏ thì khoảng cách mà hạt có năng lượng âm cần phải đi trước khi trở thành hạt thực sẽ càng ngắn và vì vậy tốc độ phát xạ và nhiệt độ biểu kiến của lỗ đen càng lớn.

Năng lượng dương của bức xạ đi ra sẽ được cân bằng bởi dòng hạt năng lượng âm đi vào lỗ đen. Theo phương trình Einstein E = mc2 (ở đây E là năng lượng, m là khối lượng và c là vận tốc độ sáng), năng lượng tỷ lệ với khối lượng. Do đó, dòng năng lượng âm đi vào lỗ đen sẽ giảm giảm khối lượng của nó. Vì lỗ đen mất khối lượng nên diện tích chân trời sự cố sẽ nhỏ đi, nhưng sự giảm đó của entropy được bù lại còn nhiều hơn bởi entropy của bức xạ phát ra, vì vậy định luật thứ hai sẽ không khi nào bị vi phạm.

Hơn nữa, khối lượng của lỗ đen càng nhỏ thì nhiệt độ của nó càng cao. Như vậy, vì lỗ đen mất khối lượng nên nhiệt độ và tốc độ bức xạ của nó tăng, dẫn tới nó mất khối lượng còn nhanh hơn nữa. Điều gì sẽ xảy ra khi khối lượng của lỗ đen cuối cùng cũng trở nên cực kỳ nhỏ hiện vẫn còn chưa rõ, nhưng sẽ rất có lý khi chúng ta phỏng đoán rằng nó sẽ hoàn toàn biến mất trong sự bùng nổ bức xạ khổng lồ cuối cùng, tương đương với sự bùng nổ của hàng triệu quả bom H.

Lỗ đen có khối lượng lớn hơn khối lượng của mặt trời một ít lần sẽ có nhiệt độ chỉ khoảng một phần mười triệu độ trên không độ tuyệt đối. Nó nhỏ hơn nhiều so với nhiệt độ của các bức xạ sóng cực ngắn choán đầy vũ trụ (khoảng 2,7 K), vì thế những lỗ đen này phát xạ thậm chí còn ít hơn hấp thụ. Nếu vũ trụ được an bài là sẽ giãn nở mãi mãi, thì nhiệt độ của các bức xạ sóng cực ngắn cuối cùng sẽ giảm tới mức nhỏ hơn nhiệt độ của lỗ đen và lỗ đen khi đó sẽ bắt đầu mất khối lượng. Nhưng ngay cả khi đó thì nhiệt độ của nó vẫn thấp đến mức cần khoảng 1 triệu triệu triệu triệu triệu triệu triệu triệu triệu triệu triệu (1 với sáu mươi sáu số không đứng sau) năm để lỗ đen bay hơi hoàn toàn. Con số đó lớn hơn nhiều tuổi của vũ trụ bằng 1 hoặc 2 và 10 con số không đứng sau (tức khoảng 10 hoặc 20 ngàn triệu năm).

Mặt khác như đã nói ở Chương 6 có thể những lỗ đen nguyên thủy được tạo thành bởi sự co lại của những bất thường trong giai đoạn rất sớm của vũ trụ. Những lỗ đen nguyên thủy với khối lượng ban đầu cỡ ngàn triệu tấn sẽ có thời gian sống xấp xỉ tuổi của vũ trụ. Những lỗ đen nguyên thủy với khối lượng nhỏ hơn con số đó chắc là đã bốc hơi hoàn toàn, nhưng những lỗ đen với khối lượng hơi lớn hơn sẽ vẫn còn đang tiếp tục phát xạ dưới dạng tia X hoặc tia gamma. Các tia X và tia gamma này giống như ánh sáng chỉ có điều bước sóng của chúng ngắn hơn nhiều. Những lỗ như thế khó mà gán cho cái nhãn là đen: chúng thực sự nóng trắng và phát năng lượng với tốc độ khoảng mười ngàn mega oat.

Một lỗ đen như vậy có thể cung cấp đủ năng lượng cho mười nhà máy điện lớn, nếu chúng ta biết cách khai thác nó. Tuy nhiên việc này chẳng phải dễ dàng gì: lỗ đen đó có khối lượng bằng cả một quả núi bị nén lại tới kích thước nhỏ hơn một phần triệu triệu của inch, nghĩa là cỡ kích thước của hạt nhân nguyên tử! Nếu bạn có một lỗ đen như thế trên mặt đất, bạn sẽ không có cách nào giữ cho nó khỏi rơi xuyên qua sàn nhà xuống tới tâm trái đất. Nó sẽ dao động xuyên qua trái đất cho tới khi cuối cùng đậu lại ở tâm. Như vậy chỗ duy nhất đặt được một lỗ đen như vậy để có thể khai thác năng lượng do nó bức xạ ra là ở trên một quỹ đạo quay xung quanh trái đất và cách duy nhất có thể đưa nó lên quỹ đạo ấy là hút nó tới đó bằng cách kéo một khối lượng lớn phía trước nó hệt như dùng củ cà rốt nhử con lừa. Điều này xem ra không phải là một đề nghị thực tế lắm, ít nhất cũng là trong tương lai gần.

Nhưng thậm chí nếu chúng ta không thể khai thác được sự phát xạ từ các lỗ đen nguyên thủy thì liệu chúng ta có cơ may quan sát được chúng không? Chúng ta có thể tìm kiếm các tia gamma mà các lỗ đen nguyên thủy phát ra trong hầu hết thời gian sống của chúng. Mặc dù phát xạ từ phần lớn các lỗ đen đều mờ nhạt vì chúng ở quá xa, nhưng tổng số của chúng thì có thể phát hiện được. Chúng ta hãy quan sát kỹ một nền tia gamma như vậy:

Hình 7.5 cho thấy cường độ quan sát được khác nhau ở những tần số khác nhau. Tuy nhiên, nền tia gamma này có thể và chắc là được sinh ra bởi những quá trình khác hơn là bởi các lỗ đen nguyên thủy. Đường chấm chấm trên Hình 7.5 cho thấy cường độ phải biến thiên thế nào theo tần số đối với các tia gamma do lỗ đen nguyên thủy gây ra nếu trung bình có 300 lỗ đen như thế trong một năm - ánh sáng khối. Do đó người ta có thể nói rằng những quan sát nền tia gamma không cho một bằng chứng khẳng định nào về các lỗ đen nguyên thủy, nhưng chúng cho chúng ta biết trong vũ trụ về trung bình không thể có hơn 300 lỗ đen như thế trong một năm - ánh sáng khối. Giới hạn đó có nghĩa là các lỗ đen nguyên thủy có thể tạo nên nhiều nhất là một phần triệu số vật chất của vũ trụ.

Với các lỗ đen nguyên thủy phân bố thưa thớt như vậy khó mà có khả năng một lỗ đen như thế ở đủ gần chúng ta để có thể quan sát nó như một nguồn tia gamma riêng rẽ. Nhưng vì lực hấp dẫn sẽ kéo lỗ đen nguyên thủy tới gần vật chất nên chúng sẽ thường gặp nhiều hơn ở trong hay gần các thiên hà. Như vậy, mặc dù nền tia gamma cho chúng ta biết rằng trung bình không thể có hơn 300 lỗ đen như thế trong một năm - ánh sáng khối nhưng nó lại chẳng cho chúng ta biết gì về tần suất gặp chúng trong thiên hà của chúng ta. Chẳng hạn nếu như chúng một triệu lần thường gặp hơn con số trung bình thì lỗ đen gần chúng ta nhất chắc cũng phải cách chúng ta chừng một ngàn triệu km, tức là xa như sao Diêm vương, hành tinh xa nhất mà chúng ta biết. Ở khoảng cách đó vẫn còn rất khó phát hiện bức xạ đều của một lỗ đen ngay cả khi nó là mười ngàn mega oát. Để quan sát được một lỗ đen nguyên thủy người ta phải phát hiện được một vài lượng tử gamma tới từ chính hướng đó trong một khoảng thời gian hợp lý, chẳng hạn như một tuần lễ. Nếu không, chúng chỉ là một phần của phông. Nhưng nguyên lý lượng tử của Planck cho chúng ta biết rằng mỗi một lượng tử gamma có năng lượng rất cao, vì tia gamma có tần số rất cao, nếu thậm chí nó có phát xạ với công suất 10 ngàn mega oát thì cũng không phải có nhiều lượng tử. Và để quan sát được một số lượng tử, lại tới từ khoảng cách rất xa như sao Diêm vương, đòi hỏi phải có một máy dò lớn hơn bất cứ máy dò nào đã được chế tạo cho tới nay. Hơn nữa máy dò này lại phải đặt trong không gian vũ trụ vì các tia gamma không thể thâm nhập qua bầu khí quyển.

Tất nhiên nếu một lỗ đen ở cách xa như sao Diêm vương đã đến ngày tận số và bùng nổ thì sẽ dễ dàng phát hiện được sự bùng nổ bức xạ của nó. Nhưng nếu lỗ đen đó liên tục bức xạ trong khoảng 10 hoặc 20 ngàn triệu năm trở lại đây thì xác suất để nó tận số trong vòng ít năm tới thực sự là rất nhỏ! Vì vậy, để có một cơ may hợp lý nhìn thấy vụ nổ của lỗ đen trước khi tiền trợ cấp nghiên cứu của bạn tiêu hết thì bạn phải tìm cách phát hiện những vụ nổ ở trong khoảng cách một năm ánh sáng. Bạn vẫn phải giải quyết vấn đề có một máy dò tia gamma lớn có thể phát hiện được một vài lượng tử gamma tới từ vụ nổ đó. Tuy nhiên, trong trường hợp này sẽ không cần phải xác định rằng tất cả các lượng tử tới cùng một hướng: chỉ cần quan sát thấy tất cả chúng đều tới trong một khoảng thời gian ngắn là có thể tin được rằng chúng tới từ cùng một vụ bùng nổ.

Một máy dò tia gamma có khả năng phát hiện ra các lỗ đen nguyên thủy chính là toàn bộ bầu khí quyển của trái đất. (Trong mọi trường hợp chúng ta không thể chế tạo được một máy dò lớn hơn). Khi một lượng tử gamma năng lượng cao đập vào các nguyên tử trong khí quyển, nó sẽ tạo ra cặp electron và positron (tức là phản - electron). Khi các hạt này đập vào các nguyên tử khác, đến lượt mình, chúng sẽ tạo ra các cặp electron và positron nữa, và như vậy người ta sẽ thu được cái gọi là mưa electron. Kết quả là một dạng ánh sáng có tên là bức xạ Cherenkov. Do đó, người ta có thể phát hiện ra sự bùng nổ tia gamma bằng cách tìm các chớp sáng trong bầu trời đêm. Tất nhiên có nhiều hiện tương khác như chớp hoặc sự phản xạ ánh sáng từ các vệ tinh rơi xuống hoặc các mảnh vỡ trên quỹ đạo cũng có thể tạo ra các chớp sáng trên bầu trời. Người ta có thể phân biệt sự bùng nổ tia gamma với các hiện tượng đó bằng cách quan sát các chớp sáng đồng thời ở hai hoặc nhiều vị trí ở cách rất xa nhau. Một thí nghiệm như thế đã được hai nhà khoa học ở Dublin là Neil Porter và Trevor Wecks thực hiện khi dùng các kính thiên văn ở Arizona. Họ đã tìm thấy nhiều chớp sáng nhưng không có cái nào có thể gán một cách chắc chắn cho sự bùng nổ tia gamma từ các lỗ đen nguyên thủy.

Ngay cả khi nếu việc tìm kiếm các lỗ đen nguyên thủy không có kết quả, vì điều này vẫn có thể xảy ra, thì nó vẫn cho chúng ta những thông tin quan trọng về những giai đoạn rất sớm của vũ trụ. Nếu vũ trụ ở giai đoạn rất sớm là hỗn loạn và bất thường hoặc nếu áp suất vật chất là thấp thì người ta có thể nghĩ rằng nó đã tạo ra nhiều lỗ đen nguyên thủy hơn là giới hạn đã được xác lập dựa trên những quan sát về phông tia gamma. Chỉ nếu ở giai đoạn rất sớm, vũ trụ là rất trơn tru và đều đặn với áp suất cao thì người ta mới có thể giải thích được tại sao lại không có nhiều lỗ đen nguyên thủy.

Ý tưởng về bức xạ phát từ các lỗ đen là một ví dụ đầu tiên về sự tiên đoán phụ thuộc một cách căn bản vào cả hai lý thuyết lớn của thế kỷ chúng ta: thuyết tương đối rộng và cơ học lượng tử. Nó đã gặp nhiều ý kiến phản đối lúc đầu vì nó đảo lộn quan điểm hiện thời “làm sao lỗ đen lại phát ra cái gì đó?”. Khi lần đầu tiên tôi công bố các kết quả tính toán của tôi tại một hội nghị ở Phòng thì nghiệm Rurtherford - Appleton gần Oxford, tôi đã được chào đón bằng sự hoài nghi của hầu hết mọi người. Vào lúc kết thúc bản báo cáo của tôi, vị chủ tọa phiên họp, ông John Taylor của trường Kings College, London đã đứng dậy tuyên bố rằng tất cả những thứ đó là vô nghĩa. Thậm chí ông còn viết một bài báo về vấn đề này. Tuy nhiên, rồi cuối cùng, hầu hết mọi người, kể cả ông John Taylo cũng đã đi đến kết luận rằng các lỗ đen cần phải phát bức xạ như các vật nóng, nếu những quan niệm khác của chúng ta về thuyết tương đối rộng và cơ học lượng tử là đúng đắn. Như vậy, mặc dù ngay cả khi chúng ta còn chưa tìm thấy một lỗ đen nguyên thủy nào vẫn có một sự khá nhất trí cho rằng nếu chúng ta phát hiện ra lỗ đen đó thì nó sẽ phải phát ra một lượng lớn tia X và tia gamma.

Sự tồn tại của bức xạ phát ra từ lỗ đen cũng còn ngụ ý rằng sự co lại do hấp dẫn không phải là chấm hết và không thể đảo ngược được như một thời chúng ta đã nghĩ. Nếu một nhà du hành rơi vào một lỗ đen thì khối lượng của nó sẽ tăng, nhưng cuối cùng năng lượng tương đương với khối lượng gia tăng đó sẽ được trả lại cho vũ trụ dưới dạng bức xạ. Như vậy theo một ý nghĩa nào đó nhà du hành vũ trụ của chúng ta đã được luân hồi. Tuy nhiên, đó là một số phận bất tử đáng thương, và quan niệm cá nhân về thời gian của nhà du hành chắc cũng sẽ chấm hết khi anh ta bị xé ra từng mảnh trong lỗ đen! Ngay cả các loại hạt cuối cùng được phát ra từ lỗ đen nói chung cũng sẽ khác với những hạt đã tạo nên nhà du hành: đặc điểm duy nhất còn lại của anh ta chỉ là khối lượng và năng lượng.

Những phép gần đúng mà tôi sử dụng để tính ra sự phát xạ từ lỗ đen vẫn còn hiệu lực tốt khi lỗ đen có khối lượng chỉ lớn hơn một phần của gam. Tuy nhiên chúng sẽ không còn dùng được nữa ở điểm cuối đời của lỗ đen, khi mà khối lượng của nó trở nên cực nhỏ. Kết cục có nhiều khả năng nhất là lỗ đen sẽ biến mất, ít nhất là khỏi vùng vũ trụ của chúng ta mang theo cả nhà du hành và kỳ dị có thể có ở bên trong nó. Đây là chỉ dẫn đầu tiên cho thấy cơ học lượng tử có thể khử các kỳ dị đã được tiên đoán bởi thuyết tương đối rộng. Tuy nhiên các phương pháp mà tôi và những người khác sử dụng vào năm 1974 chưa thể trả lời được cho những câu hỏi, ví dụ như liệu những kỳ dị đó có xuất hiện trong lý thuyết lượng tử hấp dẫn hay không? Do đó từ năm 1975 trở đi tôi đã bắt đầu phát triển một cách tiếp cận mạnh hơn đối với hấp dẫn lượng tử dựa trên ý tưởng của Richard Feynman về phép lấy tổng theo những lịch sử. Câu trả lời mà cách tiếp cận này đưa ra cho nguồn gốc và số phận của vũ trụ và những thứ chứa bên trong nó, chẳng hạn như nhà du hành, sẽ được mô tả ở hai chương sau. Chúng ta sẽ thấy rằng mặc dù nguyên lý bất định đặt những hạn chế về độ chính xác cho tất cả các tiên đoán của chúng ta, nhưng đồng thời nó lại loại bỏ được tính không thể tiên đoán - một tính chất rất cơ bản xảy ra ở điểm kỳ dị của không - thời gian.
Tài sản của mr_robin

Trả Lời Với Trích Dẫn
  #9  
Old 24-08-2008, 09:19 AM
mr_robin's Avatar
mr_robin mr_robin is offline
Cái Thế Ma Nhân
 
Tham gia: May 2008
Đến từ: SG
Bài gởi: 37
Thời gian online: 7 giờ 22 phút 5 giây
Xu: 0
Thanks: 1
Thanked 0 Times in 0 Posts
Chương 8: Nguồn gốc và số phận của vũ trụ
Lý thuyết tương đối rộng của Einstein, tiên đoán rằng không gian, thời gian bắt đầu từ kỳ dị của vụ nổ lớn, sẽ kết thúc hoặc tại một kỳ dị cuối cùng (trường hợp toàn vũ trụ co lại) hoặc tại một kỳ dị nằm bên trong một lỗ đen (trường hợp một vùng định xứ, ví dụ một sao co lại). Mọi vật chất rơi vào lỗ đen, sẽ bị phá hủy tại điểm kỳ dị, chỉ còn lại hiệu ứng hấp dẫn của khối lượng là còn được cảm nhận từ phía bên ngoài. Mặt khác, khi các hiệu ứng lượng tử được tính đến thì dường như khối lượng và năng lượng của vật chất cuối cùng sẽ trở về với phần còn lại của vũ trụ, và lỗ đen cùng với mọi kỳ dị bên trong sẽ bay hơi và biến mất. Liệu cơ học lượng tử có gây một hiệu ứng bi kịch như thế đối với vụ nổ lớn và kỳ dị chung cuộc hay không? Điều gì thực tế đã và sẽ xảy ra vào các giai đoạn rất sớm và muộn hơn của vũ trụ, khi các trường hợp hấp dẫn mạnh đến mức mà các hiệu ứng lượng tử không thể nào bỏ qua được? Thực tế vũ trụ có một điểm bắt đầu và một điểm kết thúc hay không? Và nếu có, thì phải hình dung chúng ra sao?

Trong suốt những năm 70 tôi đã tập trung nghiên cứu các lỗ đen, nhưng vào năm 1981, tôi lại lưu tâm đến các vấn đề xung quanh nguồn gốc và số phận của vũ trụ khi tôi tham gia một hội thảo về vũ trụ học tổ chức bởi các tu sĩ dòng Jesuit tại Vatican. Nhà thờ Thiên chúa giáo đã phạm một sai lầm đối với Galileo khi họ phủ định một định luật khoa học vì tuyên bố rằng mặt trời phải quay quanh quả đất. Bây giờ sau nhiều thế kỷ, họ đã quyết định mời nhiều nhà khoa học làm cố vấn về vũ trụ học. Cuối hội nghị các nhà khoa học đã được tiếp kiến Giáo hoàng. Ông nói rằng nghiên cứu sự tiến triển của vũ trụ sau vụ nổ lớn là đúng song Nhà thờ không tìm hiểu về bản thân vụ nổ lớn vì đó là thời điểm của Sáng tạo, nên thuộc công việc của Chúa. Tôi rất vui mừng vì đức Giáo hoàng không biết đến bài phát biểu của tôi tại hội thảo: khả năng không - thời gian là hữu hạn song không có biên, điều đó có nghĩa là không có cái ban đầu, không có thời điểm của Sáng tạo. Tôi không có ý muốn chịu cùng số phận của Galileo, người mà tôi có một cảm giác mạnh mẽ về sự đồng nhất với tôi, một phần vì sự trùng hợp giữa ngày sinh của tôi đúng tròn 300 năm sau ngày chết của ông.

Để giải thích các ý tưởng của tôi và những người khác về điều cơ học lượng tử có thể tác động lên nguồn gốc và số phận của vũ trụ, trước hết cần phải hiểu về lịch sử của vũ trụ theo quan điểm được nhiều người chấp nhận, dựa trên mô hình được biết dưới “mô hình nóng của vụ nổ lớn”. Mô hình này giả định rằng vũ trụ được miêu tả bởi một mô hình Friedmann, ngược theo thời gian mãi tận lúc có vụ nổ lớn. Trong những mô hình như vậy người ta thấy rằng lúc vũ trụ nở, mọi vật chất và bức xạ sẽ lạnh dần. (Khi vũ trụ đạt kích thước gấp đôi thì nhiệt độ của vũ trụ giảm xuống một nửa). Vì nhiệt độ là số đo năng lượng trung bình - hay vận tốc - của các hạt, quá trình lạnh dần này sẽ gây một hiệu ứng lớn đối với vật chất trong vũ trụ. Ở nhiệt độ rất cao, các hạt chuyển động nhanh đến mức có thể thoát ra khỏi mọi trường hút giữa chúng với nhau do lực hạt nhân, hoặc điện tử tạo nên, song khi chúng trở nên lạnh thì chúng hút nhau và kết dính với nhau.

Ngoài ra, các loại hạt tồn tại trong vũ trụ cũng phụ thuộc vào nhiệt độ. Ở nhiệt độ đủ cao, các hạt có năng lượng lớn và khi chạm nhau, nhiều cặp hạt/phản hạt có thể sinh ra và mặc dù nhiều hạt sau khi sinh ra có thể bị hủy lúc chạm các phản hạt, chúng vẫn được sinh ra nhanh hơn bị hủy đi. Ở nhiệt độ thấp hơn, khi các hạt va chạm nhau có năng lượng nhỏ hơn, các cặp hạt/phản hạt sinh ra với tốc độ chậm hơn và như vậy quá trình hủy của chúng nhanh hơn quá trình sinh.

Tại vụ nổ lớn, kích thước của vũ trụ được xem như là bằng không, vì vậy nhiệt độ là vô cùng lớn. Song trong quá trình giãn nở, nhiệt độ của bức xạ sẽ giảm xuống. Một giây sau vụ nổ lớn, nhiệt độ đã giảm xuống còn khoảng 10 ngàn triệu độ. Nhiệt độ này cỡ ngàn lần nhiệt độ ở tâm mặt trời và cỡ nhiệt độ đạt được lúc bom H (tức bom khinh khí) nổ. Vào thời điểm đó vũ trụ chứa phần lớn là các photon, electron và neutron (là những hạt nhẹ chỉ tham gia tương tác yếu và hấp dẫn) và các phản hạt của chúng, cùng với một số proton và neutron.

Lúc vũ trụ tiếp tục giãn nở và nhiệt độ hạ xuống thì các cặp electron/phản - electron sinh ra chậm hơn là bị hủy. Vì thế phần lớn các electron và phản - electron hủy với nhau để tạo thành nhiều photon và để sót lại một số electron. Song các hạt neutrino và phản - neutrino ít hủy nhau vì các hạt này tương tác với nhau và với các hạt khác rất yếu. Cho nên hiện nay chúng còn tồn tại trong vũ trụ. Nếu ta có thể quan sát được chúng thì ta có một bằng chứng chắc chắn về bức tranh của giai đoạn nóng đầu tiên của vũ trụ. Tiếc thay, năng lượng của chúng ngày nay quá nhỏ để ta có thể quan sát được chúng một cách trực tiếp. Nhưng nếu neutrino có một khối lượng nhỏ, theo kết quả một thí nghiệm chưa được kiểm nghiệm lại do những người Nga thực hiện năm 1981, thì ta có thể ghi đo được chúng một cách gián tiếp: chúng phải tạo thành một “vật chất tối”, như đã nói trước đây, vật chất sẽ sinh ra một lực hấp dẫn đủ để hãm đứng sự giãn nở của vũ trụ và buộc vũ trụ co trở lại.

Khoảng một trăm giây sau vụ nổ lớn, nhiệt độ xuống còn một ngàn triệu độ, bằng nhiệt độ trong các sao nóng nhất. Ở nhiệt độ đó proton và neutron không còn đủ năng lượng để thoát khỏi sức hút của lực hạt nhân và kết hợp với nhau để tạo thành hạt nhân của nguyên tử đơteri (hydro nặng), gồm một proton và một neutron. Các hạt nhân của đơteri lại kết hợp thêm với các proton và neutron để tạo thành hạt nhân heli, gồm hai proton và hai neutron và một số hạt nhân nặng hơn là liti và berili. Người ta có thể tính ra rằng trong mô hình nóng của vụ nổ lớn, khoảng một phần tư các proton và neutron biến thành hạt nhân heli, cùng một số nhỏ hydro nặng và các hạt nhân khác. Số neutron còn lại phân hủy thành proton vốn là hạt nhân của nguyên tử hydro.

Bức tranh về giai đoạn nóng trước đây của vũ trụ lần đầu tiên được phác họa bởi George Gamow trong công trình nổi tiếng năm 1948, thực hiện chung với một sinh viên của ông là Ralph Alpher. Gamow là một người giàu tính hóm hỉnh, ông thuyết phục nhà vật lý hạt nhân Hans Bethe điền thêm tên vào công trình với ý muốn làm cho danh sách tác giả Alpher, Bethe, Gamow đọc lên nghe gần như âm của ba chữ cái đầu tiên của bảng vần Hy Lạp là alpha, beta, gamma: thật là thích hợp cho một công trình nói về giai đoạn đầu của vũ trụ! Trong công trình này, các tác giả tiên đoán một cách đặc sắc rằng bức xạ (dưới dạng các photon) từ những giai đoạn nóng tiền sử của vũ trụ sẽ tàn dư lại trong giai đoạn hiện nay, song với nhiệt độ hạ xuống chỉ còn vài độ trên không độ tuyệt đối (- 273 độ C). Bức xạ này đã được Penzias và Wilson phát hiện năm 1965.

Vào thời gian khi Alpher, Bethe, Gamow viết công trình trên, người ta chưa biết nhiều về các phản ứng hạt nhân giữa proton và neutron. Các tính toán dự báo về tỉ số các nguyên tố trong tiền sử của vũ trụ vì lẽ trên không được chính xác lắm, song những tính toán đó đã được thực hiện lại trên cơ sở những kiến thức hiện đại và cho những kết quả trùng hợp tốt với các quan trắc thực nghiệm. Khó mà cắt nghĩa theo một cách nào khác vì sao trong vũ trụ nhiều heli như vậy. Do đó chúng ta có thể tin tưởng rằng chúng ta có một bức tranh đúng đắn, ít nhất ngược lại theo thời gian đến thời điểm khoảng 1 giây sau vụ nổ lớn.

Trong vòng một vài giờ sau vụ nổ lớn, sự sinh ra heli và các nguyên tố khác dừng lại. Sau đó trong vòng triệu năm tiếp theo, vũ trụ tiếp tục giãn nở và không có điều gì đặc biệt xảy ra. Cuối cùng lúc nhiệt độ hạ xuống còn khoảng vài ngàn độ, và electron cùng các hạt nhân không còn đủ năng lượng thoát khỏi lực hút điện từ giữa chúng, thì chúng kết hợp với nhau tạo thành các nguyên tử. Vũ trụ trong Hoàn cục tiếp tục giãn nở và lạnh dần, song trong các vùng mà mật độ cao hơn trung bình, quá trình giãn nở có chậm hơn do lực hấp dẫn ở đấy lớn hơn. Điều này có thể dẫn đến sự dừng hẳn quá trình giãn nở của một số vùng nào đó và bắt đầu quá trình co lại. Khi các vùng này co lại, lực hút hấp dẫn của vật chất chung quanh bên ngoài sẽ làm cho các vùng đó bắt đầu quay. Vì các vùng này tiếp tục co nhỏ lại nên chúng quay nhanh hơn, hoàn toàn tương tự như vận động viên trượt băng đang quay trên băng sẽ quay nhanh hơn khi họ co tay sát sơ thể. Cuối cùng khi vùng đang xét trở nên đủ nhỏ, thì nó quay nhanh hơn đủ cân bằng với lực hấp dẫn và những thiên hà quay dạng hình đĩa được hình thành theo cách đó. Các vùng khác, nếu không thu được một chuyển động quay thì sẽ có dạng hình bầu dục và sẽ được gọi là những thiên hà elliptic. Các thiên hà này sẽ dừng co lại vì nhiều bộ phận riêng lẻ của chúng sẽ chuyển động trên những quỹ đạo ổn định quanh tâm thiên hà, song về toàn cục thì thiên hà không có chuyển động quay.

Cùng với thời gian, các khối khí hydro và heli trong các thiên hà sẽ phân rã thành các đám khí nhỏ hơn và những đám khí này sẽ co lại dưới sức hấp dẫn của chúng. Khi chúng co lại thì các nguyên tử ở trong sẽ va chạm nhau và nhiệt độ của khí sẽ tăng lên, có thể đến mức đủ cao để xảy ra phản ứng nhiệt hạch. Lúc này hydro kết thành heli, nhiệt lượng thoát ra làm tăng áp suất và các đám mây không co lại thêm nữa. Chúng ổn định trong trạng thái đó rất lâu như các sao giống mặt trời, đốt cháy hydro thành heli và bức xạ phát sinh dưới dạng nhiệt và ánh sáng. Những sao có khối lượng lớn hơn cần có nhiệt độ cao hơn để cân bằng lực hút hấp dẫn lớn hơn của chúng, và các phản ứng nhiệt hạch xảy ra nhanh hơn, cho nên chúng sẽ tiêu hủy hydro trong vòng chừng một trăm triệu năm. Chúng sẽ co lại, nóng lên và bắt đầu biến heli thành những nguyên tố nặng hơn như cacbon hoặc oxy. Song chúng không để thoát nhiều năng lượng hơn, vì vậy một trạng thái tới hạn sẽ xảy ra như đã miêu tả ở chương nói về các lỗ đen.

Điều gì sẽ xảy ra sau đó không hoàn toàn rõ lắm song hình như các vùng ở tâm sao sẽ co lại đến một trạng thái mật độ cao như một sao neutron hoặc lỗ đen. Các vùng bên ngoài đôi khi có thể bị bắn ra trong một vụ nổ gọi là vụ nổ siêu sao, phát ra ánh sáng mạnh hơn mọi sao khác trong thiên hà. Một số nguyên tố nặng hình thành ở cuối đời một sao sẽ bị bắn trở lại vào đám khí của thiên hà và sẽ là nguyên liệu cho thế hệ tiếp theo của các sao. Mặt trời của chúng ta chứa khoảng 2% các nguyên tố nặng đó vì thuộc thế hệ sao thứ hai hoặc thứ ba, hình thành chừng năm ngàn triệu năm về trước từ một đám mây quay chứa các mảnh vụn của các siêu sao thế hệ trước. Phần lớn khí trong các đám mây đó sẽ cấu thành mặt trời hoặc bị bắn xa, còn một khối lượng nhỏ các nguyên tố nặng sẽ kết với nhau thành các thiên thể hiện đang chuyển động trên các quỹ đạo quanh mặt trời như trái đất.

Lúc ban đầu quả đất rất nóng và không có khí quyển. Theo thời gian quả đất lạnh dần và có được bầu khí quyển hình thành nhờ sự khuếch tán các chất khí từ khoáng chất. Bầu khí quyển trong quá khứ không phải là bầu khí quyển thích hợp với cuộc sống. Bầu khí quyển này không chứa ôxy mà chỉ chứa một số chất khí khác là độc tố cho cuộc sống như sunfua hydro (là các chất khí gây ra mùi trứng thối). Song có những dạng sống sơ khai có thể phát triển trong những điều kiện như vậy. Người ta cho rằng sự sống đó bắt đầu trong những đại dương, rất có thể là kết quả ngẫu nhiên của sự phức hợp các nguyên tử thành những cấu trúc lớn, gọi là đại phân tử, những đại phân tử này có khả năng tập hợp nhiều nguyên tử khác trong đại dương thành những cấu trúc tương tự. Như thế chúng có thể tự tạo và sinh sản.

Trong một số trường hợp có thể xảy ra các sai lầm trong quá trình sinh sản. Phần lớn các sai lầm đó dẫn đến những đại phân tử mới không có khả năng tự tạo và do đó tàn lụi dần. Song cũng có những sai lầm dẫn đến những đại phân tử lại có khả năng tự tạo. Các đại phân tử này hoàn hảo hơn và sẽ thay thế dần các đại phân tử trước. Bằng cách đó hình thành một quá trình tiến hóa dẫn đến sự phát triển những cơ thể phức tạp hơn, có khả năng tự tạo. Những dạng sống sơ đẳng lúc đầu tiêu thụ nhiều nguyên liệu khác nhau như sunfua hydro và ôxy thoát sinh. Quá trình này dần dần biến đổi thành phần của khí quyển đến hiện trạng và do đó tạo điều kiện thuận lợi cho các dạng sống cao cấp hơn như cá, bò sát, loài có vú, và cuối cùng là con người.

Bức tranh phác họa trên đây của vũ trụ từ trạng thái rất nóng và lạnh dần trong quá trình giãn nở của vũ trụ phù hợp với những quan trắc có được. Tuy nhiên, bức tranh đó cũng đặt ra nhiều câu hỏi quan trọng chưa có câu trả lời:

(1) Tại vì sao vũ trụ nóng đến như vậy ở các giai đoạn đầu tiên?

(2) Vì sao vũ trụ đồng nhất như vậy ở kích thước lớn? Tại sao vũ trụ giống nhau ở mọi điểm và theo mọi hướng? Nói riêng vì sao nhiệt độ của bức xạ phông có trị số bằng nhau theo mọi hướng? Tình huống tương tự như khi ta hỏi nhiều sinh viên một câu hỏi thi, nếu chúng trả lời giống nhau thì ta có thể tin rằng chúng đã trao đổi với nhau. Còn trong mô hình mô tả trên đây, từ vụ nổ lớn ánh sáng không đủ thời gian để đi từ một vùng quá xa xôi đến một vùng khác, mặc dù các vùng này vốn đã kề nhau trong giai đoạn sớm của vũ trụ. Theo thuyết tương đối, nếu ánh sáng không thể đi từ một vùng này đến một vùng khác, thì không có thông tin nào đã được trao đổi. Như vậy các vùng khác nhau không thể có cùng một nhiệt độ, trừ khi chúng có cùng một nhiệt độ lúc ban đầu vì một lý do nào đó chưa giải thích được.

(3) Vì sao vũ trụ bắt đầu giãn nở với vận tốc tới hạn là vận tốc ranh giới giữa mô hình co lại và mô hình giãn nở, và ngay trong thời gian hiện tại, mười ngàn triệu năm sau vẫn còn giãn nở với vận tốc tới hạn đó? Nếu như vận tốc giãn nở tại thời điểm một giây sau vụ nổ lớn chỉ nhỏ hơn một phần trăm ngàn triệu triệu thì vũ trụ đã co lại trước khi bắt đầu đạt kích thước hiện nay.

(4) Mặc dầu vũ trụ đồng nhất xét ở kích thước lớn, vũ trụ vẫn chứa những vùng định xứ có nồng độ vật chất cao hơn như các sao và thiên hà. Người ta cho rằng các sao và thiên hà được hình thành do sự khác nhau về mật độ của các vùng ngay trong các giai đoạn sớm của vũ trụ. Vậy nguồn gốc của các thăng giáng mật độ là ở đâu?

Lý thuyết tương đối, xét độc lập, không thể giải thích được các điểm trên và đưa ra các câu trả lời cho những câu hỏi vừa đặt ra vì lý thuyết tương đối đoán nhận rằng vũ trụ sinh ra từ một kỳ dị với mật độ vô cùng của vụ nổ lớn. Tại điểm kỳ dị đó, lý thuyết tương đối và các định luật vật lý khác không còn đúng nữa: người ta không thể biết điều gì sẽ xảy ra với một điểm kỳ dị đó. Như đã giải thích trước đây, điều đó có nghĩa rằng ta có thể tách rời vụ nổ lớn và các sự kiện trước nó ra khỏi lý thuyết vì chúng không thể tác động lên những gì chúng ta quan sát được. Không - thời gian cần phải có biên - đó là điểm bắt đầu từ vụ nổ lớn.

Khoa học hy vọng tìm ra các định luật cho phép trong các giới hạn xác định bởi hệ thức bất định, tiên đoán được sự phát triển của vũ trụ nếu ta biết được trạng thái của nó tại một thời điểm. Những định luật đó có thể là do Chúa ban hành, nhưng hình như sau đó Chúa đã để cho vũ trụ tự phát triển và không buồn can thiệp vào nữa. Nhưng Chúa đã chọn điều kiện ban đầu hoặc cấu hình vũ trụ như thế nào? “Điều kiện biên” tại điểm bắt đầu của thời gian là điều kiện gì?

Một câu trả lời khả dĩ là cho rằng Chúa đã chọn một cấu hình đầu tiên theo những lý lẽ mà chúng ta không có hy vọng hiểu được. Điều đó hoàn toàn trong quyền lực của một đấng siêu nhân, song nếu ông ta đã bắt đầu theo một kiểu khó hiểu như vậy, thì tại sao ông ta lại để cho vũ trụ phát triển theo những quy luật mà chúng ta có thể hiểu được? Toàn bộ lịch sử khoa học là một quá trình tiệm cận đến nhận thức được rằng các sự kiện không phát triển một cách ngẫu nhiên, mà chúng phản ánh một trật tự tiềm ẩn nào đó có hoặc không có nguồn gốc thần thánh. Ta có thể giả định một cách tự nhiên rằng trật tự đó không những được áp dụng vào các định luật mà cả vào các điều kiện ban đầu của không - thời gian. Có thể có rất nhiều mô hình vũ trụ với các điều kiện biên ban đầu khác nhau. Chúng ta phải đưa ra được một nguyên tắc nào đó để chọn được một trạng thái ban đầu, do đó chọn được một mô hình để mô tả vũ trụ.

Một khả năng là chọn cái gọi là điều kiện hỗn độn (chaotic) ban đầu. Điều kiện này giả định hoặc vũ trụ vô cùng trong không gian hoặc tồn tại vô số trong vũ trụ. Theo điều kiện gọi là hỗn độn ban đầu, xác suất tìm thấy một vùng không gian bất kỳ trong một cấu hình cho trước bất kỳ sau vụ nổ lớn là bằng nhau: trạng thái ban đầu của vũ trụ là hoàn toàn mang tính ngẫu nhiên. Điều đó có nghĩa là vũ trụ trước đây có nhiều xác suất là vô trật tự vì rằng đối với vũ trụ tồn tại nhiều cấu hình hỗn độn và vô trật tự hơn là các cấu hình đều đặn và trật tự. (Nếu mỗi cấu hình có xác suất bằng nhau thì vũ trụ phải xuất phát từ một trạng thái hỗn độn, vô trật tự vì một lý do đơn giản là tồn tại quá nhiều trạng thái như vậy). Rất khó hình dung được vì sao những trạng thái hỗn độn ban đầu lại có thể dẫn đến một vũ trụ đều đặn, trật tự ở kích thước lớn như vũ trụ hiện nay. Người ta cũng bắt buộc phải nghĩ rằng những thăng giáng mật độ trong một mô hình như thế nhất định phải dẫn đến sự hình thành một số lượng lỗ đen nguyên thủy lớn hơn cận trên thu được từ các quan trắc phông tia gamma.

Nếu vũ trụ vô cùng trong không gian, hoặc nếu tồn tại vô số vũ trụ, thì phải tồn tại ở đâu đó nhiều vùng lớn đã trở nên đồng nhất. Tình huống này giống như lúc có một đàn khỉ rất đông gõ máy chữ - phần lớn những điều chúng gõ ra vô nghĩa nhưng cũng không loại trừ có xác suất là chúng thu được một bài thơ ngắn của Shakespear. Tương tự như vậy trong trường hợp vũ trụ, cũng có thể chúng ta ngẫu nhiên sống trong một vùng đồng nhất như thế? Thoạt nghĩ có thể điều đó có quá ít xác suất vì những vùng hỗn độn và vô trật tự là quá nhiều so với những vùng đồng nhất. Song hãy giả định rằng chỉ trong những vùng đồng nhất mới tồn tại những thiên hà và các sao, ở đấy có những điều kiện thuận lợi cho sự phát triển của những sinh vật phức tạp có khả năng sinh sản như con người có khả năng đặt câu nghi vấn: Tại sao vũ trụ lại đồng nhất như thế? Đây là một ví dụ để ứng dụng cái gọi là nguyên lý vị nhân (anthropic) được phát biểu như sau: “Chúng ta nhìn thấy vũ trụ như vậy bởi vì chúng ta tồn tại”.

Có hai cách diễn dịch nguyên lý vị nhân: Nguyên lý yếu và nguyên lý mạnh. Nguyên lý vị nhân yếu khẳng định rằng trong vũ trụ vô cùng trong không gian và hoặc trong thời gian, điều kiện thuận lợi cho sự nảy sinh một dạng sống có trí tuệ chỉ xuất hiện ở một số vùng nhất định hữu hạn trong không gian và thời gian. Những sinh vật có trí tuệ trong những vùng đó sẽ không ngạc nhiên nếu chúng nhận thấy rằng địa phương của chúng trong vũ trụ thỏa mãn các điều kiện cần thiết cho sự sống của chúng. Tình huống tương tự như lúc một người giàu có sống trong môi trường nhung lụa không thấy được cảnh bần cùng chung quanh.

Một ví dụ ứng dụng nguyên lý vị nhân yếu là “giải thích” vì sao vụ nổ lớn đã xảy ra gần mười ngàn triệu năm về trước thì cũng cần gần ấy thời gian cho sự tiến hóa của sinh vật có trí tuệ. Như trước đây đã nói, đầu tiên một thế hệ sớm các sao được hình thành. Các sao này biến một số hydro và heli nguyên thủy thành cacbon và oxy vốn là các thành phần cơ thể của chúng ta. Các sao này lại nổ thành các siêu sao, và các mảnh vỡ tàn dư lại hợp thành các sao và hành tinh khác, trong số này có thái dương hệ của chúng ta đã tồn tại khoảng năm ngàn triệu năm. Trong một hoặc hai ngàn triệu năm đầu tiên của trái đất, nhiệt độ quá cao vì thế các cấu trúc phức tạp không hình thành được. Trong ba ngàn triệu năm còn lại thì một quá trình tiến hóa chậm sinh học đã nảy sinh dẫn đến sự hình thành từ những cơ thể đơn giản đến các sinh vật có khả năng tư duy đi ngược theo thời gian về vụ nổ lớn.

Nhiều người đặt nghi vấn về sự đúng đắn và ích lợi của nguyên lý vị nhân yếu. Ngoài ra một số người đi xa hơn và đề nghị nguyên lý vị nhân mạnh. Theo nguyên lý này, tồn tại hoặc nhiều vũ trụ khác nhau hoặc nhiều vùng khác nhau của một vũ trụ duy nhất, mỗi đối tượng có cấu hình ban đầu riêng và có thể có tổ hợp riêng các định luật khoa học. Trong đa số các vũ trụ đó, điều kiện không thuận lợi cho sự phát triển của những cơ thể phức tạp; chỉ có một vài vũ trụ như vũ trụ của chúng ta là có điều kiện cho sự phát triển của những sinh vật có trí tuệ đủ khả năng để đặt ra câu hỏi: vì sao vũ trụ phải giống như ta quan sát được? Câu trả lời bây giờ sẽ trở nên đơn giản. Nếu vũ trụ khác đi thì chúng ta sẽ không thể tồn tại ở đây được!

Các định luật khoa học, trong dạng mà chúng ta nhận thức như hiện nay chứa nhiều hằng số cơ bản ví dụ điện tích của electron và tỷ số khối lượng của proton và của electron. Chúng ta không thể, ít nhất là trong điều kiện hiện nay, tính được giá trị của những hằng số đó từ lý thuyết - chúng ta chỉ thu được các trị số đó bằng thực nghiệm. Có lẽ một ngày nào đó chúng ta sẽ tìm được một lý thuyết thống nhất hoàn chỉnh có khả năng tính được mọi hằng số, song cũng rất có thể rằng một số hoặc tất cả hằng số đó lại biến thiên từ vũ trụ này sang vũ trụ khác hoặc ngay trong một vũ trụ. Điều đáng chú ý là trị số của những hằng số đó dường như đã được điều chỉnh một cách tinh tế sao cho cuộc sống có thể nảy sinh và phát triển được. Ví dụ nếu điện tích electron chỉ khác đi một tý thì các sao hoặc không thể đốt cháy hydro và heli hoặc khác đi chúng không thể nổ thành siêu sao. Lẽ dĩ nhiên có thể tồn tại những dạng sống khác, mà thậm chí các nhà văn viễn tưởng cũng không sáng tạo nổi, những dạng sống không cần đến cả ánh sáng của các sao như mặt trời hoặc các nguyên tố hóa học nặng hơn được tạo thành trong các sao và bị bắn vào không gian khi sao nổ.

Có lẽ cũng dễ hiểu là miền xác định của các hằng số không thể rộng được nếu các hằng số đó phải phù hợp với sự phát triển của cuộc sống trí tuệ. Đa số các tập giá trị của các hằng số dẫn đến sự hình thành những vũ trụ mặc dầu rất đẹp, song không phù hợp cho sự phát triển sinh vật có khả năng chiêm ngưỡng vẻ đẹp đó. Chúng ta có thể đoán nhận hoặc điều đó là sự chứng minh cho mục đích thiêng liêng của Chúa trong sự sáng tạo và sự lựa chọn các định luật khoa học hoặc điều đó là sự chứng minh cho nguyên lý vị nhân mạnh. Có một số ý kiến người ta có thể đưa ra để phản đối ý kiến cho rằng nguyên lý vị nhân mạnh có thể giải thích trạng thái quan sát được của vũ trụ.

Thứ nhất, ta phải hiểu sự tồn tại của nhiều vũ trụ khác như thế nào đây? Nếu quả thực chúng tách riêng xa nhau, thì những điều xảy ra trong một vũ trụ khác sẽ không gây một hệ quả nào quan sát được trong vũ trụ chúng ta. Vì vậy chúng ta phải sử dụng nguyên lý tiết kiệm để cắt bỏ chúng khỏi lý thuyết của chúng ta. Nếu, mặt khác, tồn tại nhiều vùng khác nhau của cùng một vũ trụ, thì các định luật khoa học phải là chung cho tất cả các vùng, vì trái lại thì chúng ta không thể chuyển động liên tục từ một vùng này sang vùng khác. Trong trường hợp đó thì sự khác biệt giữa các vùng quy về sự khác biệt của các cấu hình ban đầu và như thế nguyên lý vị nhân mạnh lại quy về nguyên lý vị nhân yếu.

Ý kiến phản đối thứ hai cho là nguyên lý này đi ngược lại dòng chảy của lịch sử khoa học. Chúng ta đã đi từ mô hình vũ trụ xem quả đất là trung tâm của Ptolemy và các tiền bối, qua mô hình mặt trời là trung tâm của Copernicus và Galileo, đến mô hình hiện đại trong đó quả đất chỉ là hành tinh kích thước vừa phải quay quanh một sao trung bình trong vùng biên của một thiên hà xoắn ốc bình thường vốn chỉ là một trong triệu triệu thiên hà của vũ trụ quan sát được. Nguyên lý vị nhân mạnh lại có tham vọng cho rằng toàn bộ kiến trúc khổng lồ đó tồn tại chỉ vì con người. Điều đó quả thật là khó tin. Chắc chắn rằng thái dương hệ là một tiền đề cho cuộc sống của chúng ta, và chúng ta cũng có thể ngoại suy nghĩ đó cho toàn thiên hà của chúng ta để cho phép sự tồn tại các thế hệ sao trước đã tạo nên những nguyên tố nặng hơn. Song dường như không có một sự cần thiết nào buộc các thiên hà khác và cho vũ trụ phải đồng nhất và giống nhau theo mọi phương hướng ở kích thước lớn.

Chúng ta sẽ cảm thấy yên tâm hơn với nguyên lý vị nhân, ít nhất ở phương án yếu, nếu chúng ta có thể chứng minh rằng nhiều cấu hình ban đầu khác nhau của vũ trụ sẽ tiến triển để tạo một vũ trụ giống như vũ trụ đang quan sát được. Nếu quả như vậy, thì một vũ trụ thoát thai từ những điều kiện hỗn độn ban đầu sẽ chứa một vùng đồng nhất, đều đặn thích hợp cho sự nảy sinh cuộc sống trí tuệ. Mặt khác, nếu trạng thái ban đầu đã được chọn tuyệt đối cẩn thận để được một vũ trụ mà chúng ta thấy chung quanh, thì vũ trụ đó chắc có ít xác suất chứa một vùng nào đó trong đó sự sống có thể xuất hiện. Trong mô hình nóng của vụ nổ lớn mô tả trước đây, chúng ta đã thấy ở giai đoạn sớm của vũ trụ, nhiệt lượng không đủ thời gian để chảy từ vùng này sang vùng khác. Điều đó có nghĩa rằng trạng thái ban đầu của vũ trụ phải có cùng một nhiệt độ ở mọi nơi, có như thế thì ta mới quan sát được hiện tượng bức xạ phông có cùng một nhiệt độ ở mọi nơi theo mọi hướng. Tốc độ giãn nở ban đầu cũng phải được chọn rất chính xác thì tốc độ giãn nở hiện nay mới tiếp tục xấp xỉ tốc độ tới hạn cần thiết để tránh quá trình co lại. Điều đó có nghĩa rằng trạng thái ban đầu của vũ trụ phải được chọn rất cẩn thận nếu mô hình nóng của vụ nổ lớn là đúng ngược mãi tận tới điểm ban đầu của thời gian. Rất khó giải thích vì sao vũ trụ được bắt đầu như vậy, trừ khi cho rằng đây là hành động của Chúa muốn tạo nên những sinh vật như chúng ta.

Với ý đồ tìm một mô hình của vũ trụ, trong đó nhiều cấu hình khác nhau ban đầu có thể tiến triển đến một vũ trụ như hiện tại, một nhà khoa học công tác tại Viện công nghệ Massachusetts là Alan Guth đã đưa ra gợi ý trong các giai đoạn sớm vũ trụ đã trải qua một thời kỳ giãn nở cực nhanh. Thời kỳ giãn nở cực nhanh này được gọi là thời kỳ lạm phát, với ý nghĩa rằng trong thời kỳ đó vũ trụ đã giãn nở với tốc độ tăng dần chứ không phải giảm dần như hiện tại. Theo Guth, bán kính của vũ trụ đã tăng vọt lên triệu triệu triệu triệu triệu (1 với ba mươi con số không) lần trong chỉ một phần rất nhỏ của giây.

Guth gợi ý rằng vũ trụ đã bắt đầu từ một vụ nổ lớn, từ một trạng thái rất nóng, nhưng rất hỗn độn. Các nhiệt độ cao này làm cho các hạt trong vũ trụ chuyển động rất nhanh và có năng lượng rất lớn. Như đã nói ở trên những nhiệt độ cao như vậy các lực tương tác mạnh, yếu và điện tử hợp nhất thành một lực duy nhất. Trong quá trình giãn nở, vũ trụ lạnh dần, năng lượng các hạt giảm đi. Có thể xảy ra quá trình gọi là chuyển pha và đối xứng giữa các lực bị phá vỡ: lực tương tác mạnh trở nên khác biệt với các lực tương tác yếu và điện từ. Một ví dụ thông thường của quá trình chuyển pha là quá trình nước đóng băng khi nhiệt độ hạ thấp. Nước lỏng có đối xứng giống nhau ở mọi điểm và theo mọi hướng. Song các tinh thể băng hình thành, chúng sẽ chiếm những vị trí nhất định và xếp thành hàng theo một hướng nào đó. Điều này phá vỡ đối xứng của nước ở trạng thái lỏng.

Trong trường hợp nước, nếu cẩn thận chúng ta có thể làm “siêu lạnh” nước, điều đó có nghĩa là chúng ta có thể đưa nhiệt độ xuống dưới nhiệt độ đóng băng 0 độ C mà băng vẫn chưa xuất hiện. Guth gợi ý rằng điều đó có thể xảy ra cho vũ trụ: nhiệt độ giảm xuống dưới trị số giới hạn mà đối xứng giữa các lực vẫn chưa bị phá vỡ. Nếu điều đó xảy ra, vũ trụ sẽ rơi vào một trạng thái ổn định, với năng lượng lớn hơn năng lượng ứng với lúc đối xứng bị phá vỡ. Có thể chứng minh rằng năng lượng dôi này sẽ gây ra hiệu ứng phản hấp dẫn: nó sẽ có tác động như hằng số vũ trụ mà Einstein đã đưa vào lý thuyết tương đối rộng khi ông muốn xây dựng một mô hình tĩnh của vũ trụ.

Vì vũ trụ đã giãn nở giống như trong mô hình nóng của vụ nổ lớn, cho nên hiệu ứng đẩy của hằng số vũ trụ này làm cho vũ trụ giãn nở với vận tốc luôn tăng. Ngay cả trong những vùng với mật độ hạt lớn hơn trung bình, hiệu ứng phản hấp dẫn gây ra bởi hằng số vũ trụ đó cũng vượt quá hấp dẫn. Do đó các vùng này phải giãn nở theo quy luật gia tăng lạm phát. Trong quá trình giãn nở, các vùng đó và các hạt vật chất sẽ đi xa nhau và ta có được một vũ trụ giãn nở với mật độ hạt nhỏ và hiện nằm trong trạng thái siêu lạnh. Mọi điểm bất thường trong vũ trụ sẽ bị là đều vì quá trình giãn nở, tương tự như những nếp nhăn của một quả bóng biến dần khi ta thổi không khí vào. Như vậy trạng thái đồng nhất và đều đặn hiện nay của vũ trụ có thể đạt được trong quá trình tiến triển từ nhiều trạng thái không đồng nhất khác nhau.

Trong một vũ trụ như thế, quá trình giãn nở được gia tốc bởi hằng số vũ trụ và không bị hãm dần bởi lực hấp dẫn của vật chất, ánh sáng có đủ thời gian để thực hiện hành trình từ vùng này sang vùng khác trong các giai đoạn sớm của vũ trụ. Tình huống này có thể đưa ra lời giải cho bài toán nêu ra trước đây: vì sao các vùng khác nhau của vũ trụ có cùng những tính chất giống nhau. Ngoài ra, vận tốc nở của vũ trụ sẽ tự động trở nên xấp xỉ vận tốc giới hạn xác định bởi mật độ trong vũ trụ. Điều này có thể giải thích câu hỏi vì sao vận tốc giãn nở của vũ trụ vẫn gần vận tốc giới hạn, mà không cần giả định rằng vận tốc giãn nở ban đầu của vũ trụ đã được lựa chọn một cách cẩn thận.

Ý niệm về lạm phát cũng giúp ta giải thích được vì sao có nhiều vật chất như vậy trong vũ trụ. Có chừng mười triệu triệu triệu triệu triệu triệu triệu triệu triệu triệu triệu triệu triệu triệu (1 với tám mươi số không) hạt trong vùng không gian mà chúng ta có thể quan sát được. Chúng từ đâu đến? Theo thuyết lượng tử các hạt đó được sinh ra từ năng lượng trong cặp hạt/phản hạt. Song bây giờ lại đến câu hỏi, năng lượng từ đâu ra? Câu trả lời là năng lượng toàn phần của vũ trụ chính xác bằng không. Vật chất trong vũ trụ được cấu tạo từ năng lượng dương. Song vật chất lại hút nhau vì hấp dẫn. Hai lượng vật chất gần nhau có ít năng lượng hơn là khi chúng xa nhau, bởi vì chúng phải sản ra năng lượng để kéo chúng ra xa chống lại hấp dẫn đang kéo chúng lại gần nhau. Như thế trong một ý nghĩa nhất định, trường hấp dẫn có năng lượng âm. Trong trường hợp của một vũ trụ gần đồng nhất trong không gian, người ta có thể chứng minh được rằng năng lượng hấp dẫn âm này sẽ triệt tiêu năng lượng dương của vật chất. Như thế năng lượng toàn phần của vũ trụ bằng không.

Hai lần không vẫn là không. Cho nên vũ trụ có thể tăng gấp đôi năng lượng dương của vật chất và đồng thời tăng gấp đôi năng lượng âm của hấp dẫn mà vẫn không vi phạm định luật bảo toàn năng lượng. Điều này không thể xảy ra trong một quá trình giãn nở bình thường của vũ trụ, trong đó mật độ năng lượng vật chất giảm đi khi vũ trụ trở nên lớn hơn. Song điều đó có thể xảy ra trong một quá trình giãn nở lạm phát bởi vì mật độ năng lượng của trạng thái siêu lạnh vẫn không thay đổi khi vũ trụ giãn nở: Khi kích thước vũ trụ tăng gấp đôi, năng lượng dương của vật chất và năng lượng âm của hấp dẫn cũng tăng gấp đôi do đó năng lượng toàn phần vẫn bằng không. Trong pha lạm phát, kích thước của vũ trụ tăng lên rất nhiều. Như thế toàn phần năng lượng hiện hữu để tạo nên các hạt đều trở nên rất lớn. Như Guth đã nhận xét: “Có thể nói đây là một bữa tiệc không mất tiền. Và vũ trụ là bữa tiệc không mất tiền tối hậu”.

Vũ trụ hiện nay không giãn nở theo quy luật lạm phát. Như thế phải tồn tại một cơ chế có khả năng loại bỏ hằng số vũ trụ hiệu dụng quá lớn và như vậy biến vận tốc giãn nở từ quá trình gia tốc về quá trình chậm dần vì hấp dẫn như chúng ta hiện nay. Trong giai đoạn lạm phát có thể đối xứng giữa các lực bị phá vỡ, tương tự nước siêu lạnh rồi cuối cùng cũng phải đông lại. Năng lượng dôi ra của đối xứng bị phá vỡ thoát ra và hâm nóng vũ trụ đến một nhiệt độ vừa đúng dưới nhiệt độ tới hạn ứng với đối xứng giữa các lực. Vũ trụ tiếp tục giãn nở và lạnh dần đúng như mô hình nóng của vụ nổ lớn, song bây giờ ta lại cần giải thích tại sao vũ trụ giãn nở với vận tốc tới hạn và vì sao các vùng khác nhau có cùng một nhiệt độ.

Trong lý thuyết ban đầu của Guth, quá trình chuyển pha được giả định là xảy ra đột ngột, tương tự như các tinh thể băng trong nước thật lạnh. Có thể nghĩ rằng các “bong bóng” của pha mới của đối xứng bị phá vỡ được hình thành trong pha cũ, tương tự như các bong bóng hơi được bao bọc bởi nước đang sôi. Các bong bóng được giả định là giãn nở và gặp nhau cho đến khi toàn bộ vũ trụ rơi vào pha mới. Một khó khăn, mà tôi và nhiều người khác đã chỉ ra là vũ trụ giãn nở quá nhanh cho dẫu rằng các bong bóng lớn lên bằng tốc độ ánh sáng, chúng cũng sẽ chuyển động xa nhau ra và không kịp gặp nối nhau. Như vậy vũ trụ rơi vào trạng thái không đồng nhất, với một số vùng vẫn còn có đối xứng giữa các lực. Một bức tranh như thế không tương ứng với những điều ta quan sát được.

Tháng 10 năm 1981, tôi đến Matxcơva tham dự hội thảo về hấp dẫn lượng tử. Sau hội thảo, tôi có làm một seminar về mẫu lạm phát và các vấn đề của mẫu đó tại Viện thiên văn Sternberg. Trước đây tôi thường nhờ một người khác đọc báo cáo thay tôi vì đa số không hiểu được giọng nói của tôi. Nhưng lúc này tôi không còn thì giờ chuẩn bị nên tôi tự đọc, và chỉ nhờ nghiên cứu sinh của tôi phát lại những lời tôi nói. Phương thức này khá có kết quả và tạo được mối tiếp xúc với thính giả. Trong buổi seminar có một người Nga còn trẻ là Andrei Linde làm việc ở Viện Lebedev tại Matxcơva. Linde cho rằng có thể tránh được khó khăn gắn liền với điều các bong bóng không nối với nhau, nếu ta cho rằng các bong bóng lớn tới mức mà vùng vũ trụ của ta nằm trọn trong một bong bóng. Để giả thuyết được hợp lý thì sự phá vỡ đối xứng phải xảy ra rất chậm trong bong bóng và điều này là hoàn toàn khả dĩ trên lý thuyết thống nhất lớn.

Ý tưởng của Linde về một quá trình phá vỡ đối xứng chậm là rất hấp dẫn, song sau này tôi hiểu rằng những bong bóng của Linde phải lớn hơn kích thước vũ trụ vào lúc đó. Tôi đã chứng minh rằng đối xứng bị phá vỡ khắp mọi nơi chứ không phải trong lòng các bong bóng. Điều này sẽ dẫn đến một vũ trụ đồng nhất, đúng như ta quan sát. Tôi rất tâm đắc với ý tưởng này và cùng bàn luận với một sinh viên của tôi là Ian Moss. Với tư cách là một người bạn của Linde, tôi hơi bối rối khi sau này nhận được bài báo của Linde do một tạp chí khoa học gửi đến hỏi liệu bài báo có thể công bố hay không. Tôi đã trả lời rằng còn điểm yếu về các bong bóng lớn hơn vũ trụ, song ý tưởng cơ bản về quá trình phá vỡ đối xứng chậm là rất hay. Tôi có khuyến nghị cho đăng bài báo vì tôi nghĩ rằng nếu không Linde sẽ mất rất nhiều tháng để sửa chữa lại, bởi vì mọi tài liệu mà ông đã gửi sang phương Tây phải được thông báo qua kiểm duyệt của Liên Xô (cũ), vốn không am hiểu lắm và cũng không mau mắn gì đối với những bài báo khoa học. Tôi có viết cùng với Ian Moss một bài báo ngắn gửi đăng cùng số báo, trong đó chúng tôi đặt lại vấn đề các bong bóng và chỉ ra cách giải quyết vấn đề.

Vừa từ Matxcơva trở về, hôm sau tôi đã bay tới Philadenphia để nhận huy chương của Viện Franklin. Cô thư ký của tôi là Judy Fella đã sử dụng sắc đẹp duyên dáng của mình để thuyết phục hãng British Airways cấp cho cô ta và tôi hai vé máy bay không mất tiền xem như một hợp đồng quảng cáo cho hãng. Tiếc rằng tôi đến sân bay chậm vì mưa to và lỡ chuyến máy bay. Nhưng rồi tôi cũng đến được Philadenphia để nhận huy chương dành cho tôi. Người ta yêu cầu tôi làm một seminar về mẫu lạm phát của vũ trụ tại Trường Đại học Drexel ở Philadenphia. Và tôi đã báo cáo về các vấn đề nở lạm phát của vũ trụ, tương tự như ở Matxcơva.

Một ý tưởng gần giống của Linde cũng được phát triển độc lập sau đó vài tháng bởi Paul Steinhardt và Andreas Albrecht tại trường Đại học Pensylvania. Bây giờ họ cùng với Linde có vinh dự chung vì đã đưa ra “mô hình lạm phát mới”, dựa trên ý tưởng về một quá trình đối xứng chậm. (Mô hình lạm phát cũ dựa trên ý tưởng ban đầu của Guth về một quá trình phá vỡ đối xứng nhanh kèm theo sự hình thành các bong bóng).

Mô hình lạm phát mới là một mô hình tốt có khả năng giải thích vì sao vũ trụ lại có dạng như hiện nay. Song, nhiều người khác và tôi đã chứng minh rằng mô hình đó, ít nhất là trong phương án ban đầu, đã dẫn đến những thay đổi về nhiệt độ của bức xạ phông lớn hơn nhiều so với các quan trắc thu được. Các phương án sau cũng gây ra mối nghi ngờ liệu có tồn tại một quá trình chuyển pha kiểu như vậy ở giai đoạn rất sớm của vũ trụ hay không. Theo ý kiến của riêng tôi, thì mô hình lạm phát mới này bây giờ cũng đã chết như một lý thuyết khoa học, mặc dầu cũng còn một số người dường như chưa nghe biết và vẫn tiếp tục viết về mô hình đó.
Tài sản của mr_robin

Trả Lời Với Trích Dẫn
  #10  
Old 24-08-2008, 09:19 AM
mr_robin's Avatar
mr_robin mr_robin is offline
Cái Thế Ma Nhân
 
Tham gia: May 2008
Đến từ: SG
Bài gởi: 37
Thời gian online: 7 giờ 22 phút 5 giây
Xu: 0
Thanks: 1
Thanked 0 Times in 0 Posts
Chương 9: Mũi tên của thời gian
Nhận thức của chúng ta về bản chất của thời gian thay đổi theo năm tháng. Mãi đến đầu thế kỳ này người ta vẫn tin vào một thời gian tuyệt đối. Điều đó có nghĩa là mỗi sự cố có thể đánh dấu đơn trị bằng một con số gọi là thời gian và tất cả các đồng hồ chính xác phải cho cùng một quãng thời gian giữa hai sự cố. Song vì sự phát hiện tốc độ ánh sáng là như nhau đối với mọi quan sát viên, không phụ thuộc vào chuyển động của họ, đã dẫn đến lý thuyết tương đối buộc người ta phải hủy bỏ ý tưởng về một thời gian tuyệt đối duy nhất. Thay vì, mỗi quan sát viên có số đo thời gian riêng theo đồng hồ họ mang theo: những đồng hồ của các quan sát viên khác nhau không nhất thiết phù hợp nhau. Như thế thời gian đã trở thành một nhận thức cá nhân gắn liền với quan sát viên thực hiện phép đo.

Khi người ta tìm cách thống nhất hấp dẫn với cơ học lượng tử, người ta đã phải đưa vào khái niệm thời gian “ảo”. Thời gian ảo như nhau đối với mọi hướng không gian. Nếu ta có thể đi về hướng Bắc thì ta cũng có thể quay người và đi về phía Nam; tương tự nếu ta có thể đi trong thời gian ảo thì ta cũng có khả năng quay người và đi lui. Điều đó có nghĩa là không có sự khác biệt quan trọng nào giữa hướng trước và hướng sau của thời gian “ảo”, mặt khác khi ta xét thời gian “thực” thì có một sự khác biệt rất lớn giữa các hướng trước và sau, như chúng ta đều biết. Từ đâu ra sự khác biệt đó giữa quá khứ và tương lai? Tại sao chúng ta chỉ nhớ quá khứ mà không nhớ tương lai?

Các định luật khoa học không phân biệt quá khứ với tương lai. Nói chính xác hơn, các định luật khoa học không thay đổi dưới tổ hợp các toán tự (hay là các phép đối xứng) được biết dưới các ký hiệu C, P và T (C biến đổi hạt thành phản hạt, P là phép đối xứng qua gương, do đó trái và phải thay chỗ nhau, còn T là phép đảo hướng chuyển động của hạt: kết quả là hạt chuyển động lùi). Các định luật khoa học điều khiển tiến trình của vật chất trong mọi tình huống bình thường là không thay đổi dưới tác động của tổ hợp hai toán tử C và P. Nói cách khác, sự sống vẫn sẽ là như thế đối với người ở hành tinh khác nếu họ là phản chiếu gương của chúng ta và được cấu tạo bằng phản vật chất chứ không phải bằng vật chất.

Nếu các định luật khoa học không thay đổi dưới tổ hợp các toán tử C và P và cả dưới tổ hợp C, P và T thì chúng ta cũng phải không thay đổi dưới tác động của một mình toán tử T. Song có một sự khác biệt lớn giữa hướng trước và hướng sau của thời gian trong đời sống thường ngày. Hãy tưởng tượng một cốc thủy tinh rơi từ bàn và vỡ tan dưới sàn. Nếu ta nhìn phim ghi lại hiện tượng đó, ta có thể dễ dàng nói rằng phim đang bị quay tới hay quay lui. Nếu phim bị quay lui thì ta sẽ thấy các mảnh vỡ bỗng nhiên tập kết lại với nhau, rời khỏi sàn và rồi nhảy lên bàn thành cái cốc nguyên vẹn. Sở dĩ ta nói được là phim đang quay lui là vì trong một tiến trình như vậy không bao giờ có thể quan sát được trong cuộc sống thường ngày. Vì ngược lại các nhà máy thủy tinh đã bị phá sản.

Người ta thường giải thích hiện tượng vì sao cốc vỡ dưới sàn không thể trở thành cốc lành trên bàn bằng định luật thứ hai của nhiệt động học. Định luật đó nói rằng trong một hệ thống kín thì vô trật tự hay entropi, luôn tăng với thời gian. Nói cách khác, đấy là một dạng của định luật Murphy: mọi vật luôn tiến triển theo chiều xấu đi! Một cốc lành ở trên bàn là một trạng thái với trật tự cao còn một cốc vỡ dưới sàn nhà là một trạng thái vô trật tự. Người ta có thể đi dễ dàng từ cái cốc trên bàn đến cái cốc vỡ dưới sàn trong tương lai. Song không thể đi ngược lại.

Sự tăng vô trật tự hay entropi với thời gian là một thí dụ về cái gọi là mũi tên của thời gian, một khái niệm phân biệt quá khứ với hiện tại, một khái niệm xác định hướng của thời gian. Ít nhất có tới ba mũi tên khác nhau của thời gian. Thứ nhất là mũi tên nhiệt động học của thời gian, chỉ hướng của thời gian theo đó vô trật tự hay entropi tăng lên. Tiếp đến là mũi tên tâm lý học của thời gian. Đó là hướng theo đó chúng ta cảm nhận được thời gian đang chảy, theo đó chúng ta chỉ nhớ quá khứ mà không có thể có bất cứ một lưu niệm nào của tương lai. Cuối cùng là mũi tên vũ trụ học của thời gian. Đó là hướng của thời gian, theo đó vũ trụ nở ra chứ không co lại.

Trong chương này tôi sẽ chứng minh rằng điều kiện không có biên của vũ trụ kết hợp với nguyên lý vị nhân yếu có thể giải thích được vì sao phải tồn tại một mũi tên thời gian có hướng xác định. Tôi sẽ chứng minh rằng mũi tên tâm lý học được xác định bởi mũi tên nhiệt động học và hai mũi tên đó nhất thiết phải luôn luôn chỉ cùng hướng. Nếu ta giả định điều kiện không có biên cho vũ trụ, ta sẽ thấy tồn tại các mũi tên nhiệt động học và vũ trụ học của thời gian, song chúng không chỉ về cùng một hướng trong suốt lịch sử của vũ trụ. Nhưng tôi sẽ chứng minh rằng chỉ trong trường hợp khi chúng chỉ về cùng một hướng thì mới có những điều kiện thuận lợi cho sự phát triển những sinh vật trí tuệ có khả năng đặt ra câu hỏi: vì sao vô trật tự tăng theo hướng thời gian, theo đó vũ trụ nở ra?

Tôi sẽ bàn trước tiên đến mũi tên nhiệt động học của thời gian. Định luật thứ hai của nhiệt động học được suy ra từ dữ kiện: luôn luôn có nhiều trạng thái vô trật tự hơn trạng thái có trật tự. Ví dụ, hãy xét những miếng lắp hình trong một trò chơi. Có một và chỉ có một cách xếp những miếng lắp hình này thành một hình cho trước. Mặt khác có vô số cách xếp trong đó có những miếng lắp hình vô trật tự và không tạo thành một hình nào cả.

Giả sử một hệ xuất phát từ một trong số ít ỏi các trạng thái trật tự. Cùng với thời gian, hệ sẽ tiến triển theo các định luật khoa học và trạng thái của hệ thay đổi. Ở một thời điểm sau, có nhiều xác suất để hệ rơi vào một trạng thái vô trật tự hơn là một trạng thái trật tự bởi vì có nhiều trạng thái vô trật tự hơn. Như thế vô trật tự sẽ có chiều hướng tăng lên với thời gian nếu hệ lúc ban đầu có một trật tự cao.

Giả sử các miếng lắp hình lúc ban đầu nằm trong hộp trò chơi theo một cách xếp trật tự và tạo thành một hình. Nếu ta lắc hộp, các miếng lắp hình sẽ được xếp lại theo cách khác. Đó sẽ là một cách xếp vô trật tự, trong đó các mảnh không tạo thành một hình nào, vì một lý do đơn giản là có nhiều cách xếp vô trật tự hơn. Một số nhóm các mảnh có thể vẫn còn tạo thành một số bộ phận của hình ban đầu, song càng lắc hộp thì càng có nhiều xác suất là các nhóm đó cũng tan vỡ và các mảnh sẽ rơi vào trạng thái hoàn toàn vô trật tự, trong đó các mảnh không còn tạo nên một hình dạng nào cả. Như thế vô trật tự của các mảnh sẽ có nhiều xác suất tăng lên với thời gian nếu ban đầu chúng ở trạng thái có trật tự cao.

Song bây giờ giả sử rằng Chúa đã quyết định là vũ trụ phải kết thúc bằng một trạng thái có trật tự cao bất kể trạng thái ban đầu là như thế nào. Như vậy ở những giai đoạn sớm vũ trụ có nhiều xác suất ở vào trạng thái vô trật tự. Điều đó có nghĩa là vô trật tự sẽ giảm theo thời gian và ta sẽ thấy cốc vỡ tập kết lại thành cốc lành và nhảy lên bàn. Những con người quan sát được cái cốc đó sẽ phải sống trong một vũ trụ ở đấy vô trật tự giảm với thời gian. Tôi sẽ chứng minh rằng những con người như thế sẽ có mũi tên tâm lý học của thời gian hướng về phía sau. Nghĩa là họ sẽ nhớ các sự kiện trong tương lai mà không nhớ các sự kiện trong quá khứ. Khi cốc vỡ, họ sẽ nhớ nó lúc ở trên bàn, họ sẽ không nhớ lúc nó ở dưới sàn.

Rất khó nói về trí nhớ của con người bởi vì chúng ta không biết bộ não hoạt động chi tiết như thế nào. Song có lẽ chúng ta biết rõ cách hoạt động của bộ nhớ các máy tính điện tử. Vì vậy tôi sẽ bàn về mũi tên tâm lý học của thời gian đó với máy tính điện tử. Tôi cho rằng ta có lý khi giả định rằng mũi tên đối với máy tính điện tử trùng với mũi tên đối với con người. Nếu không chúng ta có thể trúng to tại thị trường chứng khoán bằng cách sử dụng một máy tính điện tử có khả năng nhớ giá cả của ngày mai.

Bộ nhớ của máy tính điện tử cơ bản là một thiết bị chứa những yếu tố có thể nằm ở một trong hai trạng thái. Một ví dụ đơn giản là cái bàn tính. Trong dạng đơn giản nhất, bàn tính gồm một số dây kim loại, trên mỗi dây sâu một hạt, hạt có thể ở một trong hai vị trí. Trước khi một thông tin được ghi vào bộ nhớ của máy tính, bộ nhớ ở trong một trạng thái vô trật tự, với xác suất bằng nhau cho các cặp trạng thái khả dĩ (các hạt của bàn tính phân bố ngẫu nhiên trên các dây). Sau khi bộ nhớ tương tác với hệ cần nhớ, bộ nhớ sẽ ở vào một trạng thái nhất định ứng với trạng thái của hệ. (Mỗi hạt trên bàn tính sẽ ở hoặc bên trái hoặc bên phải của dây). Như thế bộ nhớ chuyển từ một trạng thái vô trật tự sang một trạng thái trật tự.

Song, để thực hiện sử chuyển trạng thái đó, cần phải tiêu tốn một năng lượng (để chuyển động các hạt của bàn tính hoặc cung cấp điện năng cho máy tính điện tử). Năng lượng này sẽ khuếch tán thành nhiệt năng và làm tăng vô trật tự của vũ trụ. Người ta có thể chứng minh rằng độ gia tăng vô trật tự này luôn luôn lớn hơn độ gia tăng trật tự của bản thân bộ nhớ. Như thế lượng nhiệt xua đi bởi cái quạt làm mát máy tính là bằng chứng nói rằng khi máy tính ghi một thông tin vào bộ nhớ thì tổng vô trật tự trong vũ trụ tăng lên. Hướng đi của thời gian theo đó một máy tính ghi lại quá khứ trong bộ nhớ là cùng hướng với sự gia tăng vô trật tự.

Như thế sự cảm nhận chủ quan của chúng ta về hướng đi của thời gian, tức mũi tên tâm lý học của thời gian, được xác định trong bộ não bởi mũi tên nhiệt động học của thời gian. Tương tự như máy tính điện tử, chúng ta phải nhớ sự việc theo thứ tự mà entropi tăng. Điều này làm cho định luật thứ hai của nhiệt động học trở thành hầu như hiển nhiên. Vô trật tự tăng với thời gian vì chúng ta đo thời gian theo hướng tăng của vô trật tự. Bạn không thể có một cách đánh cuộc nào khác chắc ăn hơn!.

Nhưng vì sao nói chung lại tồn tại một mũi tên nhiệt động học của thời gian? Hay nói cách khác, vì sao vũ trụ phải ở trong một trạng thái trật tự cao ở đầu kia của thời gian, đầu mà người ta gọi là quá khứ? Tại sao vũ trụ không nằm trong một trạng thái vô trật tự ở mọi thời gian? Nói cho cùng, điều này có vẻ như nhiều xác suất hơn. Và tại sao hướng đi của thời gian theo đó vô trật tự tăng lại trùng khớp với hướng theo đó vũ trụ nở ra?

Trong lý thuyết tương đối rộng cổ điển người ta không thể tiên đoán được vũ trụ đã bắt đầu như thế nào bởi vì mọi định luật khoa học đã biết đều không đúng tại điểm kỳ dị của vụ nổ lớn. Vũ trụ có thể bắt đầu từ một trạng thái rất đồng nhất và trật tự, điều này sẽ dẫn đến mũi tên nhiệt động học và vũ trụ học xác định của thời gian như chúng ta quan sát. Song vũ trụ có thể hoàn toàn bắt đầu tự một trạng thái rất không đồng nhất và vô trật tự. Trong trường hợp này vì vũ trụ đã ở trong trạng thái rất vô trật tự rồi, cho nên vô trật tự không thể tăng theo thời gian nữa. Vô trật tự hoặc không thay đổi, lúc này không tồn tại mũi tên nhiệt động học xác định của thời gian, hoặc giảm đi, lúc này mũi tên nhiệt động học của thời gian chỉ hướng ngược lại của mũi tên vũ trụ học. Các khả năng này không phù hợp với điều ta quan sát được. Song ở đây lý thuyết tương đối rộng cổ điển tự tiên đoán sự sụp đổ của mình. Khi độ cong của không - thời gian trở nên lớn, các hiệu ứng hấp dẫn lượng tử trở nên quan trọng và lý thuyết cổ điển không còn mô tả tốt vũ trụ được nữa. Để hiểu được vũ trụ đã bắt đầu như thế nào, ta phải sử dụng một lý thuyết hấp dẫn lượng tử.

Trong một lý thuyết hấp dẫn lượng tử muốn xác định trạng thái của vũ trụ chúng ta cần phải biết cách diễn biến của mọi lịch sử khả dĩ của vũ trụ ở biên không - thời gian trong quá khứ. Ta có thể tránh việc mô tả những gì mà ta không biết và không thể biết được nếu cho rằng các lịch sử thỏa mãn điều kiện không có biên: chúng hữu hạn song không có biên, không có kỳ dị. Trong trường hợp đó, khởi điểm thời gian là một điểm không kỳ dị của không - thời gian và vũ trụ bắt đầu quá trình giãn nở từ một trạng thái đồng nhất và trật tự. Song vũ trụ không thể tuyệt đối đồng nhất vì như thế nó sẽ vi phạm nguyên lý bất định của lý thuyết lượng tử. Phải tồn tại những thăng giáng nhỏ và mật độ và vận tốc các hạt. Mặt khác điều kiện không có biên buộc rằng các thăng giáng đó phải đủ nhỏ, nhưng trong mức độ cho phép của nguyên lý bất định.

Vũ trụ có thể bắt đầu bằng một giai đoạn giãn nở hàm mũ hay giãn nở “lạm phát”, trong giai đoạn này vũ trụ đã gia tăng kích thước nhiều lần. Trong quá trình giãn nở này, các thăng giáng mật độ lúc đầu có thể nhỏ, song sau đó thì bắt đầu lớn lên. Những vùng với mật độ lớn hơn trung bình một tý giãn nở chậm hơn vì lực hút hấp dẫn của khối lượng thừa. Những vùng như thế có thể ngừng giãn nở và co lại để hình thành những thiên hà, các sao và cả những sinh vật như chúng ta. Vũ trụ có thể bắt đầu từ một trạng thái đồng nhất và trật tự, và dần dần trở thành không đồng nhất và vô trật tự. Điều này có thể giải thích mũi tên nhiệt động học của thời gian.

Song điều gì sẽ xảy ra nếu vũ trụ ngừng giãn nở và bắt đầu co lại? Mũi tên nhiệt động học có đổi hướng không và vô trật tự có giảm đi với thời gian không? Sự đảo ngược này sẽ dẫn đến những tình huống khoa học viễn tưởng cho những người sống sót sau thời điểm chuyển pha từ quá trình co lại sang quá trình co lại của vũ trụ. Những người này sẽ thấy những mảnh vỡ tập kết lại từ dưới sàn thành cốc lành và nhảy lên bàn chăng? Họ sẽ nhớ được giá cả của ngày mai và trúng to trên thị trường chứng khoán chăng?

Nỗi lo lắng điều gì sẽ xảy ra khi vũ trụ co trở lại ít nhiều mang tính chất kinh viện vì lẽ rằng vũ trụ có co lại cũng ít nhất cũng vài chục tỷ năm nữa. Song có một cách nhanh chóng hơn để biết điều gì sẽ xảy ra lúc đó là nhảy vào một lỗ đen. Quá trình co lại của một sao để hình thành một lỗ đen rất giống những giai đoạn cuối của quá trình co lại của toàn bộ vũ trụ. Như thế nếu vô trật tự giảm trong pha co lại của vũ trụ thì vô trật tự cũng phải giảm trong lòng một lỗ đen. Như thế có thể người du hành vũ trụ khi rơi vào một lỗ đen sẽ trúng to trên bàn bi quay bằng cách nhớ lại bi đã rơi vào đâu trước khi anh ta đặt cược (song tiếc thay anh ta không đủ thời gian chơi lâu trước khi biến thành sợi mỳ ống. Anh ta cũng không thể thông báo cho chúng ta biết về sự đảo hướng của mũi tên nhiệt động học, thậm chí cũng không đưa kịp tiền thắng cược của mình vào ngân hàng vì anh ta bị cuốn mất sau chân trời sự cố của lỗ đen). Lúc đầu tôi những tưởng rằng vô trật tự sẽ giảm khi vũ trụ co lại. Tôi tưởng thế vì tôi cho là vũ trụ sẽ quay về trạng thái đồng nhất và trật tự khi nó trở thành nhỏ. Điều này có nghĩa là pha co lại là nghịch đảo theo thời gian của pha giãn nở. Mọi người sống trong pha co lại sẽ sống cuộc đời chảy lùi: họ sẽ chết trước lúc sinh ra và càng ngày càng trẻ ra lúc vũ trụ co nhỏ lại.

Ý tưởng trên rất hấp dẫn vì thiết lập được một đối xứng đẹp giữa hai pha giãn nở và co lại. Song chúng ta không thể chấp nhận ý tưởng này một cách tự thân, độc lập với những ý tưởng khác về vũ trụ. Câu hỏi nảy sinh là: ý tưởng này tương thích hay mẫu thuẫn với điều kiện không có biên? Như đã nói ở trên tôi đã nghĩ lúc đầu rằng điều kiện không có biên ắt đòi hỏi rằng vô trật tự sẽ giảm đi trong pha co lại. Ở đây tôi nhầm một phần vì liên tưởng đến mặt quả đất. Nếu ta lấy cực Bắc làm điểm bắt đầu tương ứng của vũ trụ, thì điểm kết thúc của vũ trụ sẽ tương tự như điểm ban đầu, hoàn toàn giống như cực Nam tương tự với cực Bắc. Song cực Bắc và cực Nam chỉ tương ứng với điểm bắt đầu và kết thúc của vũ trụ trong thời gian ảo mà thôi. Điểm bắt đầu và điểm kết thúc của vũ trụ có thể rất khác nhau trong thời gian thực.

Tôi nhầm phần khác vì một công trình tôi làm trước dựa trên một mô hình đơn giản của vũ trụ trong đó pha co lại là nghịch đảo theo thời gian của pha giãn nở. Nhưng một bạn đồng nghiệp của tôi, Don Page ở đại học quốc gia Pennsylvania đã chỉ ra rằng điều kiện không có biên không đòi hỏi pha co lại nhất thiết phải là nghịch đạo theo thời gian của pha giãn nở. Sau đó một sinh viên của tôi, Raymond Laflamme đã phát hiện rằng trong một mô hình phức tạp hơn một chút thì sự co lại của vũ trụ khác xa sự giãn nở. Tôi hiểu rằng tôi đã nhầm: điều kiện không có biên ngụ ý rằng vô trật tự thực tế vẫn tiếp tục tăng trong quá trình co lại. Các mũi tên nhiệt động học và tâm lý học của thời gian sẽ không đảo hướng cả trong lỗ đen, lẫn khi vũ trụ bắt đầu co lại.

Bạn phải làm gì khi nhận ra mình đã nhầm như thế? Một số người chẳng bao giờ chấp nhận mình sai và tiếp tục tìm ra những lý lẽ mới, thường mâu thuẫn với nhau để bảo vệ quan điểm của mình như trường hợp Eddington đã làm để chống lại thuyết các lỗ đen. Một số người khác phủ nhận rằng đã thực tế bảo vệ quan điểm sai lầm, hoặc nếu có bảo vệ thì cũng chỉ vì muốn vạch ra sai lầm của quan điểm đó. Theo ý tôi tốt hơn cả là công bố trên báo quan điểm sai lầm của mình. Một ví dụ đẹp là trường hợp Einstein khi cho rằng hằng số vũ trụ mà ông đưa vào lý thuyết để thiết lập mô hình tĩnh của vũ trụ là sai lầm lớn nhất của đời mình.

Quay trở lại mũi tên của thời gian, còn lại câu hỏi: vì sao ta quan sát thấy các mũi tên của nhiệt động học và vũ trụ học là đồng hướng? Hay nói cách khác, vì sao vô trật tự tăng lên theo hướng của thời gian theo đó vũ trụ giãn nở? Nếu ta tin tưởng rằng vũ trụ giãn nở rồi sau đó sẽ co lại, điều này dường như đã tiềm ẩn trong điều kiện không có biên, thì câu hỏi trên trở thành câu hỏi vì sao chúng ta phải ở vào pha giãn nở chứ không phải pha co lại?

Chúng ta có thể trả lời câu hỏi này trên cơ sở của nguyên lý vị nhân yếu. Các điều kiện trong pha co lại không cho phép sự tồn tại các sinh vật có trí tuệ để mà có khả năng đặt ra câu hỏi: Vì sao vô trật tự tăng theo hướng của thời gian theo đó vũ trụ giãn nở? Sự giãn nở lạm phát trong những giai đoạn sớm của vũ trụ, tiên đoán bởi giả thiết không có biên, có nghĩa là vũ trụ phải giãn nở gần tốc độ tới hạn, với tốc độ vũ trụ vừa vặn tránh được quá trình co lại, và như thế sẽ không co lại trong một thời gian rất dài. Đến lúc đó các sao sẽ cháy và các proton và neutron trong các sao sẽ phân rã thành bức xạ và các hạt nhẹ. Vũ trụ sẽ ở vào trạng thái gần như vô trật tự hoàn toàn. Mũi tên nhiệt động học của thời gian sẽ không xác định. Vô trật tự không thể tăng hơn vì vũ trụ đã rơi vào trạng thái gần vô trật tự hoàn toàn.

Song, một mũi tên nhiệt động học xác định là cần thiết cho sự sống có trí tuệ. Để sống, con người cần thức ăn vốn ở dạng trật tự của năng lượng, biến đổi thức ăn thành nhiệt năng là dạng vô trật tự của năng lượng. Như vậy sức sống có trí tuệ không thể tồn tại trong pha co lại của vũ trụ điều này giải thích vì sao ta quan sát thấy các mũi tên nhiệt động học và vũ trụ học của thời gian đều chỉ về một hướng. Không phải sự giãn nở của vũ trụ làm cho vô trật tự tăng lên. Đúng hơn là điều kiện không có biên làm cho vô trật tự tăng lên và các điều kiện trở nên thích hợp cho sự sống trí tuệ chỉ trong pha giãn nở của vũ trụ.

Tóm lại, các định luật khoa học không phân biệt hướng tới và hướng lui của thời gian. Song ít nhất có ba mũi tên thời gian làm phân biệt quá khứ với tương lai. Đó là mũi tên nhiệt động học chỉ hướng theo thời gian theo đó vô trật tự tăng lên; mũi tên tâm lý học chỉ hướng theo thời gian theo đó chúng ta chỉ nhớ quá khứ mà không nhớ tương lai và mũi tên vũ trụ học chỉ hướng theo thời gian theo đó vũ trụ giãn nở chứ không co lại. Tôi đã chứng minh rằng mũi tên tâm lý học và mũi tên nhiệt động học thực chất là một, vì chúng chỉ cùng hướng. Giả thiết không có biên cho vũ trụ dẫn đến sự tồn tại của một mũi tên nhiệt động học xác định của thời gian vì vũ trụ phải xuất phát từ một trạng thái thống nhất và trật tự. Và lý do làm sao ta quan sát mũi tên nhiệt động học cùng hướng với mũi tên vũ trụ học là các sinh vật có trí tuệ chỉ có thể tồn tại trong pha giãn nở. Pha co lại của vũ trụ không thích hợp cho sự sống có trí tuệ vì trong pha này không tồn tại mũi tên nhiệt động học định hướng rõ ràng.

Tiến bộ của loài người trong quá trình nhận thức đã thiết lập nên một góc nhỏ trật tự trong cái vô trật tự ngày càng tăng của vũ trụ. Nếu bạn nhớ mỗi chữ trong quyển sách này, trí nhớ của bạn đã ghi nhận khoảng hai triệu đơn vị thông tin: trật tự trong bộ não của bạn đã tăng lên chừng hai triệu đơn vị. Song khi bạn đóng quyển sách này bạn đã biến ít nhất hai ngàn calo năng lượng trật tự ở dạng thức ăn thành năng lượng vô trật tự ở dạng nhiệt mà bạn mất đi vào môi trường xung quanh do đối lưu và bay hơi mồ hôi. Điều này sẽ làm tăng vô trật tự của vũ trụ khoảng 20 triệu triệu triệu triệu đơn vị hay khoảng mười triệu triệu triệu lần số gia tăng trật tự trong bộ não của bạn, nếu bạn nhớ mọi thứ trong quyển sách này.
Tài sản của mr_robin

Trả Lời Với Trích Dẫn
Trả lời

Từ khóa được google tìm thấy
, , , ,

Ðiều Chỉnh


©2008 - 2014. Bản quyền thuộc về hệ thống vui chơi giải trí 4vn.eu™
Diễn đàn phát triển dựa trên sự đóng góp của tất cả các thành viên
Tất cả các bài viết tại 4vn.eu thuộc quyền sở hữu của người đăng bài
Vui lòng ghi rõ nguồn gốc khi các bạn sử dụng thông tin tại 4vn.eu™